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ABSTRACT

Driven by the need to solve increasingly complex optimization prob-
lems in signal processing and machine learning, recent years have
seen rising interest in the behavior of gradient-descent based al-
gorithms in non-convex environments. Most of the works on dis-
tributed non-convex optimization focus on the deterministic setting,
where exact gradients are available at each agent. In this work,
we consider stochastic cost functions, where exact gradients are re-
placed by stochastic approximations and the resulting gradient noise
persistently seeps into the dynamics of the algorithm. We estab-
lish that the diffusion algorithm continues to yield meaningful es-
timates in these more challenging, non-convex environments, in the
sense that (a) despite the distributed implementation, restricted to lo-
cal interactions, individual agents cluster in a small region around a
common and well-defined vector, which will carry the interpretation
of a network centroid, and (b) the network centroid inherits many
properties of the centralized, stochastic gradient descent recursion,
including the return of an O(µ)-mean-square-stationary point in at
most O

(
1/µ2

)
iterations.

Index Terms— Stochastic optimization, adaptation, non-
convex, gradient noise, stationary points.

1. INTRODUCTION

The broad objective of distributed adaptation and learning is the so-
lution of global, stochastic optimization problems over distributed
networks through localized interactions and in the absence of infor-
mation about the statistical properties of the data. When constant,
rather than diminishing, step-sizes are employed, the resulting algo-
rithms are adaptive in nature and able to adapt to drifts in the prob-
lem or data statistics. In this work, we consider a collection of N
agents, where each agent is equipped with a stochastic risk of the
form Jk(w) , ExQk(w;x) and the objective of the network is to
seek the Pareto solution:

min
w
J(w), where J(w) ,

N∑
k=1

pkJk(w) (1)

and pk are positive weights that are normalized to add up to one
and will be specified further below. In (1), the variable x represents
data and expectations are computed relative to the distribution of
this data. Algorithms for the solution of (1) have been studied exten-
sively over recent years both with inexact [1–3] and exact [4–6] gra-
dients. Here, we shall focus on the following Adapt-then-Combine
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variation of the diffusion algorithm [2]:

φk,i = wk,i−1−µ∇̂Jk(wk,i−1) (2a)

wk,i =

N∑
`=1

a`kφ`,i (2b)

where ∇̂Jk(·) denotes a stochastic approximation to the true local
gradient∇Jk(·) and a`k are convex combination weights satisfying:

a`k ≥ 0,
∑
`∈Nk

a`k = 1, a`k = 0 if ` /∈ Nk (3)

whereNk denotes the set of neighbors of agent k.

Assumption 1 (Strongly-connected graph). We shall assume that
the graph described by the weighted combination matrix A = [a`k]
is strongly-connected.

It then follows from the Perron-Frobenius theorem [2, 7, 8], that
A has a single eigenvalue at one while all other eigenvalues are in-
side the unit circle, so that ρ(A) = 1. Moreover, if we let p denote
the right-eigenvector of A that is associated with the eigenvalue at
one, and if we normalize the entries of p to add up to one, then it
also holds that all entries of p are strictly positive, i.e.,

Ap = p, 1
Tp = 1, pk > 0 (4)

where the {pk} denote the individual entries of the Perron vector, p.
The performance of the diffusion algorithm (2a)–(2b) has been

studied extensively in differentiable settings [3, 9], with extensions
to multi-task [10], constrained [11] and non-differentiable [12, 13]
environments. A common assumption in these works, along with
others studying the behavior of distributed optimization algorithms,
is that of convexity (or strong-convexity) of the aggregate risk J(w).
While many problems of interest such as least-squares estima-
tion [2], logistic regression [2], and support vector machines [14]
are convex, there has been increased interest in the optimization of
non-convex cost functions. Such problems appear frequently in the
design of robust estimators [15] and the training of more complex
machine learning architectures such as those involving dictionary
learning [16] and artificial neural networks [17].

As a result, recent works have pursued the development and
study of optimization algorithms for non-convex problems, both in
the deterministic and stochastic setting [18,19]. Works on distributed
non-convex optimization so far have largely focused on the deter-
ministic setting, where exact gradients are available [20–22]. Other
related works consider stochastic gradient approximations, but re-
quire a central master node [23], resulting in parallel, rather than
a truly distributed implementation, or require a diminishing step-
size [24], rendering them inapplicable in scenarios that call for con-
tinuous adaptation. In contrast, we shall focus on implementations
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that employ stochastic gradient approximations and constant step-
sizes, and do not require a central communication hub. This is mo-
tivated by two considerations. First, computation of the exact gradi-
ents ∇Jk(·) may be infeasible in practice because (a) data may be
streaming in, making it impossible to compute∇ExQk(·;x) in the
absence of knowledge about the distribution of the data or (b) the
data set, while available as a batch, may be so large that efficient
computation of the full gradient is infeasible. Second, and perhaps
surprisingly, there have been observations in the literature comment-
ing on the benefit of introducing gradient perturbations into the op-
timization of non-convex functions [18, 19]. These observations are
mainly motivated by the fact that gradient perturbations move iter-
ates “out” of unstable saddle-points and towards more stable local
minima, which are generally preferable [17]. Some works have pur-
sued rigorous analytical justifications of this behavior for the class
of strict saddle-points [18, 19].

We first establish that in non-convex environments, as is the case
in the strongly-convex setting (see for example [3]), the evolution of
the iterates wk,i continues to be well-described by the evolution of
the weighted centroid vector

∑N
k=1 pkwk,i, in the sense that the it-

erates cluster around the network centroid after sufficient iterations.
This observation allows us to establish an approximate descent rela-
tion for the network centroid, which mirrors that for the centralized
stochastic gradient descent up to constants (see for example [18]),
and use this relation to establish that the network centroid, around
which all agents cluster, will reach an O(µ)-mean-square-stationary
point after at most O

(
1/µ2

)
iterations.

2. EVOLUTION ANALYSIS

We perform the analysis under the following common assumptions
on the gradients and their approximations.

Assumption 2 (Lipschitz gradients). For each k, the gradient
∇Jk(·) is Lipschitz, namely, for any x, y ∈ RM :

‖∇Jk(x)−∇Jk(y)‖ ≤ δ‖x− y‖ (5)

In light of (1) and Jensen’s inequality, this implies for the aggregate
cost:

‖∇J(x)−∇J(y)‖ ≤ δ‖x− y‖ (6)

Assumption 3 (Bounded gradients). For each k, the gradient
∇Jk(·) is bounded, namely, for any x ∈ RM :

‖∇Jk(x)‖ ≤ G (7)

Assumption 4 (Gradient noise process). For each k, the gradient
noise process is defined as

sk,i(wk,i−1) = ∇̂Jk(wk,i−1)−∇Jk(wk,i−1) (8)

and satisfies

E [sk,i(wk,i−1)|wk,i−1] = 0 (9a)

E
[
‖ sk,i(wk,i−1)‖2|wk,i−1

]
≤ β2‖∇Jk(wk,i−1)‖2 + σ2 (9b)

for some non-negative constants {β2, σ2}.

2.1. Centroid recursion

In analyzing the recursions, it turns out to be useful to introduce the
following extended quantities, which collect variables from across
the network:

Wi , col {w1,i, . . . ,wN,i} (10)

A , A⊗ IM (11)

ĝ(Wi) , col
{
∇̂J1(w1,i), . . . , ∇̂JN (wN,i)

}
(12)

We can then write the diffusion recursion (2a)–(2b) compactly as

Wi = AT (Wi−1−µĝ(Wi−1)) (13)

Multiplying both sides of (13) by
(
pT ⊗ I

)
from the left, we obtain

in light of (4):(
pT ⊗ I

)
Wi =

(
pT ⊗ I

)
Wi−1−µ

(
pT ⊗ I

)
ĝ(Wi−1) (14)

Letting wc,i =
∑K
k=1 pkwk,i =

(
pT ⊗ I

)
Wi and exploiting the

block-structure of the gradient term, we find:

wc,i = wc,i−1−µ
N∑
k=1

pk∇̂Jk(wk,i−1) (15)

Note that wc,i is essentially a convex combination of estimates
across the network and can be viewed as a weighted centroid. The
recursion for wc,i is reminiscent of a stochastic gradient step asso-
ciated with the aggregate cost

∑N
k=1 pkJk(w) with the exact gra-

dients ∇Jk(·) replaced by stochastic approximations ∇̂Jk(·) and
the stochastic gradients evaluated at wk,i−1, rather than wc,i−1. In
fact, we can write:

wc,i = wc,i−1−µ
N∑
k=1

pk∇Jk(wc,i−1)− µdi−1 − µ si (16)

where we defined the perturbation terms:

di−1 ,
N∑
k=1

pk (∇Jk(wk,i−1)−∇Jk(wc,i−1)) (17)

si ,
N∑
k=1

pk
(
∇̂Jk(wk,i−1)−∇Jk(wk,i−1)

)
(18)

Observe that di−1 arises from the disagreement within the network,
and in particular that if each wk,i−1 remains close to the network
centroid wc,i−1, the perturbation will be small in light of the Lips-
chitz condition (5) on the gradients. The second perturbation term
si arises from the noise introduced by stochastic gradient approxi-
mations at each agent. The remainder of this work is dedicated to
establishing that recursion (16) will continue to exhibit some of the
desired properties of (centralized) gradient descent, despite the pres-
ence of persistent and coupled perturbation terms.

2.2. Network disagreement

To begin with, we study more closely the evolution of the individual
estimates wk,i relative to the network centroid wc,i. From (16), we
have:

Wc,i , 1⊗wc,i =
(
1pT ⊗ I

)
(Wi−1−µĝ(Wi−1)) (19)
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and hence:

Wi−Wc,i

=
(
AT − 1pT ⊗ I

)
(Wi−1−µĝ(Wi−1))

(a)
=
(
AT − 1pT ⊗ I

)(
I − 1pT ⊗ I

)
(Wi−1−µĝ(Wi−1))

=
(
AT − 1pT ⊗ I

)
(Wi−1−Wc,i−1−µĝ(Wi−1)) (20)

where (a) follows from the equality:(
AT − 1pT ⊗ I

)(
I − 1pT ⊗ I

)
= AT − 1pT ⊗ I (21)

The recursive relation for the network disagreement allows for the
following result.

Lemma 1 (Network disagreement). Under assumptions 1–4 and
for sufficiently small step-sizes µ, the network disagreement is
bounded as:

E ‖Wi−Wc,i‖2 ≤ µ2 λ2
2

(1− λ2)
2

(
G2 + β2G2 + σ2) , for i ≥ io.

(22)
where λ2 = ρ

(
AT − 1pT ⊗ I

)
+ τ < 1.

Proof. Omitted due to space limitations.

This result allows us to bound the perturbation terms encoun-
tered in (16).

Lemma 2 (Perturbation bounds). Under assumptions 1–4 and for
sufficiently small step-sizes µ, the perturbation terms are bounded
as:

E ‖di−1‖2 ≤ µ2cρδ
2pmax

λ2
2

(1− λ2)
2

(
G2 + β2G2 + σ2) (23)

E ‖si−1‖2 ≤ β2G2 + σ2 (24)

after sufficient iterations i ≥ i0.

Proof. Omitted due to space limitations.

2.3. Evolution of the network centroid

Having established that after sufficient iterations, all agents in the
network will have contracted around the centroid in a small cluster
for small step-sizes, we can now leverage wc,i as a proxy for all
wk,i. Assumption 2 implies the following bound:

J(wc,i) ≤ J(wc,i−1) +∇J(wc,i−1)
T (wc,i−wc,i−1)

+
δ

2
‖wc,i−wc,i−1‖2 (25)

This relation, along with (16) and the results from Lemma 2, allow
us to establish the following theorem.

Theorem 1 (Descent relation). Under assumptions 1–4 and for suf-
ficiently small step-sizes, we have:

E {J(wc,i)|wc,i−1} ≤ J(wc,i−1)− µc1‖∇J(wc,i−1)‖2 + µ2c2
(26)

where

c1 ,
1− 2µδ

2
= O(1)

c2 ,
δ

2

(
β2G2 + σ2)+O(µ) = O(1)

Proof. Omitted due to space limitations.

The descent relation (26) has the same form (apart from con-
stants) as the one obtained for centralized gradient descent (see
for example [18]) and is useful because it establishes a sufficient
condition under which the diffusion recursion (2a)–(2b) is a de-
scent recursion for the network centroid. Specifically, we will have
E {J(wc,i)|wc,i−1} ≤ J(wc,i−1) whenever:

‖∇J(wc,i−1)‖2 ≥ µ
c2
c1

(27)

As a corollary we obtain:

Corollary 1 (Stationary points). Suppose the aggregate cost is
bounded from below, i.e., J(w) ≥ Jo. Then, the centroid wc,i will
reach an O(µ)-mean-square-stationary point in at most O

(
1/µ2

)
iterations. Specifically for some time i?, we have:

E ‖∇J(wc,i?)‖2 ≤ 2µ
c2
c1

(28)

and

i? ≤
(
J(w0)− Jo

c2

)
1

µ2
(29)

Proof. We prove the result by contradiction. First, assume that there
is no time i? with E ‖∇J(wc,i?)‖2 ≤ 2µ c2

c1
. Then, for all i:

E ‖∇J(wc,i)‖2 ≥ 2µ
c2
c1

(30)

Iterating (26), we obtain:

E J(wc,i) ≤ J(w0)− µc1
i∑

k=1

(
E ‖∇J(wc,k−1)‖2 − µ

c2
c1

)
≤ J(w0)− µ2c2i (31)

and hence limi→∞E J(wc,i) ≤ −∞ which contradicts J(w) ≥
Jo for all w. Hence, we conclude that there is a finite, first moment
in time i? with E ‖∇J(wc,i?)‖2 ≤ 2µ c2

c1
. Since i? is the first such

time, we still have for i < i?:

E ‖∇J(wc)‖2 ≥ 2µ
c2
c1

(32)

Iterating (26) up to time i?, we similarly obtain:

Jo ≤ E J(wc,i?) ≤ J(w0)− µ2c2i
? (33)

Rearranging yields the result.

We conclude that at some time i? ≤ O
(
1/µ2

)
, the network

centroid will reach an O(µ)-mean-square-stationary point.

3. APPLICATION: ROBUST REGRESSION

Consider a scenario where each agent k in the network observes
streaming realizations {γ(k, i),hk,i} from the linear model:

γ(k) = hT
kw

o + v(k) (34)

where γ(k) denote scalar observations and v(k) denotes measure-
ment noise. The most commonly used approach for solving such a
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problem in a distributed setting is via least-mean-square error esti-
mation, resulting in the local cost functions:

JLS
k (w) = E

∥∥∥γ(k)− hT
kw
∥∥∥2 (35)

The resulting problem is convex and has been studied extensively
in the literature. While effective under the assumption of Gaus-
sian noise, and similar well-behaved noise conditions, this approach
is susceptible to outliers caused by heavy-tailed distributions for
v(k) [15]. This is caused by the fact that the quadratic risk penal-
izes errors proportionally to their squared norm, and as such has a
tendency to over-correct to outliers, even if they are very rare. Sev-
eral alternative robust cost functions have been suggested in the lit-
erature. We consider two in particular in order to illustrate the ad-
vantages of allowing for non-convex costs in the context of robust
estimation, namely the Huber loss and Tukey’s biweight loss [15].
For ease of notation, let e(w) , γ(k)− hT

kw. Then:

QH
k (w;x) =

{
1
2
|e(w)|2, for |e(w)| ≤ cH

cH |e(w)| − 1
2
c2H , for |e(w)| > cH .

(36)

QB
k (w;x) =


c2B
6

(
1−

(
1− |e(w)|2

c2
B

)3)
, for |e(w)| ≤ cB

c2B
6

otherwise.

(37)

where cH , cB are tuning constants. The Huber cost is merely con-
vex (and not strongly-convex), while the Tukey loss is non-convex.
As such previous results on the performance of the diffusion algo-
rithm (2a)–(2b) are not applicable. Both of them do however satisfy
assumptions 1–4 imposed in this work, and as such the results hold.
In particular, since the Huber loss JH

k (w) has a unique, local min-
imum, which also happens to be locally strongly-convex, we can
conclude that the algorithm will approach the global minimum. The
Tukey loss on the other hand, is non-convex, and as such a more
challenging problem.

The setting for the simulation results is shown in Figure 1.

2 4 6 8 10 12 14 16 18 20
Agent index

40

45

50

55

60

65

70

R
eg
re
ss
or
 p
ow

er

Fig. 1: Graph with N = 20 nodes (left) and regressor power
Tr (Rh,k) at each agent (right).

We first show the performance of each strategy in the nominal
scenario, where v(k) ∼ N (0, σ2

v). We observe that the distributed
strategies outperform the non-cooperative ones, and that despite dif-
ferences in the rate of convergence, there is negligible difference in
the performance of the least-squares, Huber and Tukey variations.

Next, we illustrate the performance in the presence of outliers,
modeled as a bimodal distribution with v(k) ∼ (1− ε)N (0, σ2

v) +
εN (10, σ2

v) and ε = 0.1. We observe that the performance of the
least-squares solution dramatically deteriorates, as is to be expected
in the presence of deviations from the nominal model.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Iteration ×103

−70

−60

−50

−40

−30

−20

−10

0

10

M
SD

 in
 d
B

Non-cooperative LS
Diffusion LS
Non-cooperative Huber
Diffusion Huber
Non-cooperative Tukey
Diffusion Tukey

Fig. 2: MSD performance in the absence of outliers.
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Fig. 3: MSD performance in the presence of outliers.

4. CONCLUSION

We presented a framework that allows for the study of the behav-
ior of a class of distributed algorithms in non-convex environments
and the presence of persistent stochastic perturbations. In particular,
we showed that the evolution of the network continues to be well-
described by the evolution of the network centroid, in the sense that
all iterates wk,i cluster within O(µ2) of the network centroid wc,i

in the mean-square sense after sufficient iterations. This insight was
leveraged to establish a descent relation for the network centroid and
to conclude thatwc,i, and hencewk,i will necessarily reach a point
that is O(µ)-mean-square-stationary in at most O

(
1/µ2

)
iterations

(Corollary 1). Directions for future work include the more care-
ful study of the behavior around saddle-points, and the exploration
of further applications, particularly in dictionary learning and deep
learning.
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