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ABSTRACT

In this paper we consider distributed convex optimization over time-
varying undirected graphs. We propose a linearized version of pri-
marily averaged network dual ascent (PANDA) that keeps the ad-
vantages of PANDA while requiring less computational costs. The
proposed method, economic primarily averaged network dual ascent
(Eco-PANDA), provably converges at R-linear rate to the optimal
point given that the agents’ objective functions are strongly convex
and have Lipschitz continuous gradients. Therefore, the method is
competitive, in terms of type of rate, with both DIGing and PANDA.
The proposed method halves the communication costs of methods
like DIGing while still converging R-linearly and having the same
per iterate complexity.

Index Terms— Distributed Optimization, Time-varying net-
works, Dual methods

1. INTRODUCTION

In this paper we solve convex optimization problems of the form

min
x̄∈Rp

n∑
i=1

fi(x̄) (1)

in a decentralized manner within a network of n agents. Agent i
possesses exclusive knowledge of its private objective function fi.
Problems of the form of (1) naturally arise in applications such as
distributed estimation and control [7, 8, 9, 10], decentralized source
localization [11], power grids [12, 13] and distributed learning [14,
15, 16]. Methods to solve problems of the form (1) in a decentralized
manner over static networks have received a lot of attention in the
last few years. If the individual objective functions, fi, are strongly
convex and have Lipschitz continuous gradients, linearly converging
methods such as the decentralized exact first-order algorithm (EX-
TRA) [17] have previously been proposed. In some applications, the
agents may be communicating via wireless links. Due to the random
nature of the wireless channel the communication links can be unre-
liable. This justifies the need for procedures according to which the
agents cooperate to solve the optimization problem in (1) over time
varying networks. DIGing [2] is the first known method to have es-
tablished linear convergence over time-varying networks. However,
DIGing requires the exchange of both the primal variables and the
gradients at each iteration.
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Dual methods have been shown to reach optimal convergence
rates in distributed optimization [18]. However, with the exception
of PANDA [4, 3], no dual method has been proposed to date that can
provably converge linearly on time-varying networks. In [3] we es-
tablish PANDA’s R-linear converge and demonstrate that it requires
the exchange of only the primal variables as opposed to DIGing.
However, at each iteration the nodes must solve a convex optimiza-
tion problem. This is not problematic whenever the objective func-
tion is dual friendly [19], but may be computationally expensive oth-
erwise. To alleviate this we propose herein Eco-PANDA, a linearized
version of PANDA, capable of converging linearly on time varying
graphs while still requiring the exchange of only the primal variables
at each iteration.

The remainder of this paper is organized as follows. In Section
2 we formalize the problem further, introduce Eco-PANDA and pro-
vide the formal statement regarding Eco-PANDA’s convergence. In
Section 3 we provide a skeleton of the proof the statement made in
Section 2. In Section 4 we empirically illustrate Eco-PANDA’s con-
vergence. Finally we end the paper with some concluding remarks.

2. PROBLEM FORMULATION AND ALGORITHM

Let G(k) = (V, E(k)) denote the undirected graph representing the
network that connects the n agents at time k. The agents are rep-
resented by the vertices V and the connections between the agents
by the edges E(k). The agents i and j can communicate if the edge
(i, j) ∈ E(k). Further, we assume the graph is undirected, and there-
fore, if (i, j) ∈ E(k) then (j, i) ∈ E(k). Further, the set of agents
with which agent i can communicate will be denoted Ni(k). In or-
der to solve the optimization problem (1) in a distributed manner
over the graph G(k) we introduce for each of the agents a copy xi of
the optimization variable x̄ and define the optimization problem

min
x∈Rnp

f(x) =

n∑
i=1

fi(xi) (2a)

s.t. (Inp −W(k)⊗ Ip) x = 0 , (2b)

where x , (xT1 , . . . ,x
T
n )T and W(k) fulfils the requirements pro-

vided in Assumption 1.

Assumption 1 (Mixing Matrix Sequence {W(k)}). For any k =
0, . . . , 1, the mixing matrix W(k) ∈ Rn×n satisfies the following
relations:

(P1) Decentralized property: if i 6= j and (i, j) 6∈ E(k) wij(k) =
0, i.e., W(k) is defined on the edges of the graph G(k).

(P2) Doubly stochastic: W(k)1n = 1n, 1
T
nW(k) = 1Tn .
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(P3) Joint spectrum property: Let σmax denote the largest singular
value of a matrix and let

Wb(k) , W(k)W(k − 1) . . .W(k − b+ 1), (3)

for k ≥ 0 and b ≥ k − 1, with Wb(k) = In for k < 0 and
W0(k) = In. Then, there exists a positive B such that

sup
k≥B−1

δ(k) = δ < 1, (4)

where

δ(k) = σmax

{
WB(k)− 1

n
1Tn1n

}
, ∀k = 0, 1, . . . . (5)

Properties (P1) and (P2) in Assumption 1 are common in the
consensus literature while (P3) is a requirement on the time-varying
nature of the graph G(k). Examples and discussion on condition (P3)
can be found in [2].

Eco-PANDA follows the same intuition as PANDA. For an intu-
ition on PANDA please refer to [3]. PANDA solves the optimization
problem

max
y:((In− 1

n
1n1T

n )⊗Ip)y=0
f∗(y), (6)

where 1n ∈ Rn denotes the vector of all ones and f∗(y) ,
min

x∈Rnp
yTx − f(x) denotes the Fenchel conjugate of f by ap-

plying approximated projected gradient descent on (6), where the
projection is approximated via a gradient tracking scheme much like
the schemes in [2] and [5]. While PANDA achieves R-linear con-
vergence rates by communicating half as many variables as DIGing
per iteration, the communication cost is decreased at the expense
of increased computational costs. In particular, PANDA requires
obtaining the minimizer

xp(k + 1) := ∇f∗(y(k)) = min
x∈Rnp

f(x)− y(k)Tx, (7)

for a given value of y(k) at each iteration, while DIGing requires
only a simple update in the direction of the approximated average
gradient. Eco-PANDA addresses this by using a quadratic upper
bound on the objective functions that leads to simple iterates. Be-
fore introducing Eco-PANDA we will introduce the following as-
sumption on the objective functions.

Assumption 2 (Strong convexity and Lipschitz continuity of gradi-
ents). The objective function f is µ−strongly convex and its gradi-
ent is L−Lipschitz continuous.

In order to make PANDA competitive to DIGing in terms of
iterate complexity we propose to upper bound the objective function
in (7) by

f(x(k))+(∇f(x(k))−y(k))T (x−x(k))+
η

2
‖x−x(k)‖2. (8)

Since the function f is convex and is L−Lipschitz continuous, as
long as η > L (8) is an upper bound to the objective function in
(7). Further, the upper bound becomes tight as y(k) → y? and
x(k)→ x?.With this we are ready to introduce Eco-PANDA which
is formally written in Algorithm 1.

We are now ready to provide the paper’s main statement.

Algorithm 1 Eco-PANDA
1: Choose step size c > 0, η > L and pick z(0) = x(0) and y(0)

such that (Π1n ⊗ Ip)y(0) = 0.
2: for k = 0, 1, . . . do each agent i = 1, . . . , n:
3: computes

xi(k + 1) := xi(k)− 1

η
(∇fi(xi)− yi(k))

4: exchanges zi(k) with the agents inNi(k).
5: computes

zi(k + 1) :=
∑

j∈Ni(k)∪{i}

wij(k)zj(k) + xi(k + 1)− xi(k)

6: and computes

yi(k + 1) := yi(k)− c(xi(k + 1)− zi(k + 1))

7: end for

Theorem 1 (Eco-PANDA converges R-linearly). Let Assumptions 1
and 2 hold. Also, let κ , L

µ
denote the condition number of f an

q , 1− µ
η
. Define the quantities

C ,
q(1−√q)

(max{ 1
η
, q
µ
}+B(1− δ))(3 + q)

, α ,
C

µ
< 1 (9)

λBc̄ ,
αδ +

√
4κ3/2(4κ3/2 − αδ2)

α+ κ3/2
, c̄ ,

αµ(λBc̄ − δ)2

2
√
κ

(10)

Then for any step size

c ∈
(

0,
αµ(1− δ)2

2

)
(11)

the sequence {y(k)}k≥0 converges to y?, the unique solution of (6),
and the sequences {xi(k)}k≥0 converge to x̄? the unique solution
of (1), at a global R-linear rate of at least O(λk), where λ < 1 is
given by

λ =


2B
√

1− c
2L

c ∈ (0, c̄]

B

√
δ +

√
2c
√
κ

αµ
c ∈ (c̄, αµ(1−δ)2

2
)

(12)

When comparing the statement in Theorem 1 to the main state-
ment in [3] one can see that the upper bound on the convergence rate
is affected by the parameter α. In particular, for PANDA α = 1,
while for Eco-PANDA α < 1.

Due to space restrictions, the convergence proof is not provided
fully in the following section. A full version of the paper with the
convergence proofs can be found in [1]. However, a skeleton of the
proof of convergence is provided in the following section in the sense
that the main intermediate results required for the overall proof are
stated. Further, an intuition and connections to PANDA are estab-
lished at every point.

3. SKELETON OF PROOF OF CONVERGENCE

This section is devoted to providing the guidelines to proof Theo-
rem 1. We will start the section by introducing some notation and
the small gain theorem, which is the main tool used to establish the

5258



z⊥

r x⊥ ∆⊥xz ∆y s ε r

∆x

,

Fig. 1. Cycle of arrows

convergence of Eco-PANDA. Let si , {si(0), si(1), . . .} denote an
infinite sequence of vectors si(k) ∈ Rnp, for i = 1, . . . ,m. Further,
let

‖si‖λ,K , sup
k=0,...,K

1

λk
‖si(k)‖, ‖si‖λ , sup

k≥0

1

λk
‖si(k)‖.

(13)

Theorem 2 (Small gain theorem [2]). Suppose s1, . . . , sm are vec-
tor sequences such that for all positive k and for each i = 1, . . . ,m,
we have an arrow si → s(i mod m)+1, i.e.,

‖s(i mod m)+1‖λ,K ≤ γi‖si‖λ,K + ωi, (14)

where the constants γ1, . . . , γm and ω1, . . . , ωm are independent of
K. Further, suppose that the constants γ1, . . . , γm are non-negative
and satisfy γ1 . . . γm < 1. Then we have that

‖s1‖λ ≤ 1

1− γ1γ2 . . . γm
(ω1γ1γ3 . . . γm + ω2γ3γ4 . . . γm

+ . . .+ ωm−1γm + ωm). (15)

Further, if ‖s1‖λ < C where C < ∞, ‖s1(k)‖ converges to zero
exponentially fast and at rate λ. Proof of this statement can be found
in [2]. Further, due to the cyclic nature of the small gain theorem all
sequences will converge to zero exponentially fast at rate λ.

In order to establish the convergence of Eco-PANDA we will
first establish the cycle of arrows in Fig. 1 where, given that Π⊥1n

,
(In− 1

n
1n1Tn )⊗Ip, the sequences are defined as r(k) , y(k)−y?,

x⊥ , Π⊥1n
x(k + 1), ∆⊥xz(k) , Π⊥1n

(x(k) − z(k)), ∆y(k) ,
y(k)−y(k− 1), s(k) , (‖x(k)−x(k− 1)‖, ‖x(k)−xp(k)‖)T ,
(c.f. (7) for the definition of xp(k)), z⊥(k) , Π⊥1n

z(k), ∆x(k) ,
x(k) − xp(k), and ε(k) , Π⊥1n

(x(k) − xp(k) − z(k)). For con-
sistency in the proofs we will define y(−1) = y(0) and x(−1) =
x(0) = z(0).

Before starting to prove that each of the arrows holds true we re-
quire some intermediate results. Proof of the two lemmas introduced
below can be found in [3].

Lemma 1 (Well conditioned Fenchel Conjugate [3]). The Fenchel
conjugate f∗ is 1

L
−strongly convex and has 1

µ
-Lipschitz continuous

gradients if and only if the objective function f is µ-strongly convex
and has L−Lipschitz continuous gradients.

Lemma 2 (Equivalent iterates [3]). The Eco-PANDA iterates can be
equivalently written as

x(k + 1) := x(k)− 1

η
(∇f(x)− y(k)) (16a)

z(k + 1) := (W(k)⊗ Ip)z(k) + x(k + 1)− x(k) (16b)

y(k + 1) := y(k)− c(Π⊥1n
⊗ Ip)(x(k + 1)− z(k + 1)) (16c)

Where the iterates in x can be seen as a step in the direction of the
gradient of (7) with time varying y, the iterate in z tracks the moving
average of x and the iterate in y corresponds to an inexact projected
gradient step. We now formally express each of the arrows in the
form of (14).

Lemma 3 (r → x⊥). If f is µ−strongly convex (c.f. Assumption
2), it holds that

‖x⊥‖λ,K ≤ 2λ+ (1 + q)

λ2µ(1− q
λ

)
‖r‖λ,K , (17)

for all λ ∈ (q, 1) and K ≥ 0, where q , 1− µ
η

for η > L.

The proof of Lemma 3 uses the fact that the iterate (16a) of Eco-
PANDA can be seen as running gradient descent on the time varying
objective function f(x) − y(k)Tx. In other words, every time the
objective function changes, via the change of y(k) a single gradient
step is taken using the previous iteration as a warm start. This strat-
egy has been used to track the time varying optimizer of a sequence
of time varying functions in [6]. In particular, we use the results in
[6] to establish a connection between x(k + 1) and xp(k + 1) (c.f.
(7)). Then, we use the results in [3] to finalize the proof.

Lemma 4 (x⊥ → ∆⊥xz). Under Assumption 1 it holds that

‖∆⊥xz‖ ≤
2(1− λB)

(1− λ)(λB − δ)‖x
⊥‖λ,K

λB

λB − δ

B∑
t=1

λ1−t‖∆⊥xz(t− 1)‖, (18)

for all λ ∈ (δ
1
B , 1) and for all K ≥ 0.

Lemma 5 (∆⊥xz → ∆y). It holds that

‖∆xz‖λ,K ≤ c‖∆y‖λ,K , (19)

for any c > 0, K > 0 and λ ∈ (0, 1).

Lemma 6 (∆y → s). Given that the objective function f is
µ−strongly convex (c.f. Assumption 2) it holds that

‖s‖λ,K ≤
λmax{ 1

η
, q
µ
}

λ− ρ ‖∆y‖λ,K , for λ ∈ (ρ, 1). (20)

In order to establish how well the average tracking sequence
z(k + 1) is performing, we require to understand how the quan-
tity x(k + 1) − x(k) is behaving. In the case of PANDA, this is
fully characterized by the quantity y(k) − y(k − 1) through Lips-
chitz continuity of the gradients of the Fenchel conjugate. However,
the variation x(k + 1) − x(k) in the case of Eco-PANDA does not
exclusively depend on the difference y(k) − y(k − 1) but also on
how close to xp(k) x(k) was. This is captured in the statement in
Lemma 6.

The following lemmas are introduced with no proof. For a proof
of the lemmas see full version of the paper.

Lemma 7 (s→ ∆x). It holds that ‖∆x‖λ,K ≤ ‖s‖λ,K .

Lemma 8 (s→ z⊥). Under assumption 1 it holds that

‖z⊥‖λ,K ≤ 1− λB

(1− λ)(λB − δ)‖s‖
λ,K

+
λB

λB − δ

B∑
t=1

λ1−t‖z(t− 1)‖, (21)

for λB ∈ (δ, 1).
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Lemma 9 (∆x, z⊥ → ε). It holds that ‖ε‖λ,K ≤ ‖s‖λ,K +
‖z⊥‖λ,K .

Lemma 10 (ε → r). Under Assumptions 1 and 2, c ∈
(
0, µ

2

]
and

λ ∈
[√

1− c
2L
, 1
)

it holds that

‖r‖λ,K ≤
√
Lµ‖ε‖λ,K + 2‖r(0)‖. (22)

We now have established all the arrows in Fig. 1 and are ready to
invoke the small gain theorem. In order to be able to claim that Eco-
PANDA converges R-linearly we have to establish that there exists a
tuple (λ, c, η) such that the conditions

2(2λ+ 1 + q)(1− λB)A(1− λB + (1− λ)(λB − δ))
(λ− q)(λ− ρ)((1− λ)(λB − δ))2

× c < 1√
κ
, with A , max

{
1

η
,
q

µ

}
(23)

λ ∈
(

max

{
q, ρ, δ1/B ,

√
1− c

2L

}
, 1

)
, c ∈

(
0,
µ

2

]
(24)

for q = 1− µ
η
, η > 0 are fulfilled.

By using that for 0.5 ≤ λ ≤ 1 it holds that (1−λB)/(1−λ) ≤
B [2], we have that if c fulfils

c ≤ (λ− q)(λ− ρ)(λB − δ)2

√
κ(A+B(λB − δ))(2(2λ+ 1 + q))

(25)

it will also fulfil (23). Recall now that q = 1 − µ
η

and ρ =

max{q, L
η
}. Further, by inspecting (24) we may conclude that

λ ≥
√

1− µ
4L

, λmin. In particular, by choosing η = 4L we have
that
√
q = λmin and also ρ = q. Therefore, we conclude that if we

chose η = 4L we have that any c fulfilling c ≤ C(λb−δ)2
2
√
κ

, where
fulfils (23). This implies that we are to establish that there exists a
pair (λ, c) fulfilling

c ≤ C(λB − δ)2

2
√
κ

, c ≥ 2L(1− λ2) (26)

λ ∈
(
δ1/B , 1

)
, c ∈

(
0,
µ

2

]
(27)

given that η = 4L.Note that evaluating the value of q andA inC For
a more detailed discussion reffer to [full version]. For convenience
let us write C = αµ for α ∈ (0, 1). Then, the procedure to establish
the result is identical to that in Section 4.C in [3].

4. NUMERICAL EXPERIMENTS

In order to illustrate the performance of Eco-PANDA, consider the
decentralized estimation problem

min
x∈Rp

1

2nd

n∑
i=1

‖Hix− bi‖2 +
r

2
‖x‖2. (28)

The elements of a vector x̂ ∈ Rd are generated independently and
according to the distribution N (0, 10). The elements of the matri-
ces Hi are generated independently and according to the distribu-
tion N (0, 0.1). Then, the vectors bi are generated according to the
equation bi = Hix̂ + ξi where the elements of ξi are generated
independently and according to the distribution N (0, 0.1). The se-
quence of graphs G(V, E(k)) on which the problem (28) is solved

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
·104

10−10

10−9
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10−3

10−2

10−1

100

Iteration number

‖x
(k
)
−

x
?
‖/
‖x

?
‖

Eco-PANDA
PANDA
DIGing

Fig. 2. Performance of Eco-PANDA, PANDA and DIGing.

is randomly generated. In particular, each bi-directional arc will be-
long to the set of edges with probability π. The Metropolis Hastings
matrix is chosen for both methods, i.e. the mixing matrix is given by

wi,j(k) =


1

max{di(k),dj(k)} (i, j) ∈ E(k)

1−
∑
j∈Ni(k) wi,j(k) i = j

0 otherwise.

(29)

Fig. 2 is generated by setting n = 10, p = 3, d = 5, r = 1 and
π = 0.1. Picking r = 1 allows for the optimization problems to
be well conditioned allowing for PANDA and Eco-PANDA to per-
form well. On ill conditioned problems, DIGing is expected to per-
form better [3]. This observation is consistent with the empirical
evidence in [3] and the analysis in both [3] and [2], where in [3]
we require the strong convexity of each of the function components
and in [2] the strong convexity of only one of them is required. The
step-sizes for the methods have been hand-optimized and are set to
c = 0.0005, η = 0.5 for Eco-PANDA, cPANDA = 0.001 for PANDA
and αDIGIing = 0.003 for DIGing respectively.

From Fig. 2 one can see that Eco-PANDA is outperformed by
PANDA in terms of the number of iterations required to achieve
certain accuracy. This is reasonable as the iterates of Eco-PANDA
are an approximation of those of PANDA. Note however that Eco-
PANDA could still be preferable in terms of computation cost due to
the simpler iterates. Further, as could be concluded from Theorem 1
Eco-PANDA tolerates a smaller step size before starting to diverge
than PANDA. However, the iterates of PANDA require a matrix in-
version at each iterate to solve the optimization problem (6) while
the iterates of Eco-PANDA require just the computation of the gra-
dient.

5. CONCLUSIONS

In this paper we proposed Eco-PANDA a linearized version of
PANDA that we have proven converges linearly on time-varying
graphs. By doing this we have circumvented the main disadvantage
PANDA has when compared to DIGing, that is, that the iterates are
computationally speaking more expensive. Eco-PANDA alleviates
the nodes’ computational burden while keeping the low communi-
cation cost of PANDA. We analytically and numerically observe the
performance loss due to the having simpler iterates. The loss in per-
formance is directly related to the shrinking of the largest allowed
step-size which provides for the best convergence bound.
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