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ABSTRACT

In this paper, we consider the problem of solving a distributed
(consensus-based) optimization problem in a network that
contains regular and malicious nodes (agents). The regu-
lar nodes are performing a distributed iterative algorithm to
solve their associated optimization problem, while the mali-
cious nodes inject false data with a goal to steer the iterates
to a point that serves their own interest. The problem consists
of detecting and isolating the malicious agents, thus allow-
ing the regular nodes to solve their optimization problem.
We propose a method to dwarf data injection attacks on dis-
tributed optimization algorithms, which is based on the idea
that the malicious nodes (individually or in collaboration)
tend to give themselves away when broadcasting messages
with the intention to drive the consensus value away from
the optimal point for the regular nodes in the network. In
particular, we provide a new gradient-based metric to detect
the neighbors that are likely to be malicious. We also provide
some simulation results demonstrating the performance of
the proposed approach.

Index Terms— distributed optimization, adversarial

nodes, byzantine fault tolerance

1. INTRODUCTION

Many problems in machine learning and social sciences can
be generalized as an optimization problem of minimizing the
finite sum of local functions:

N

min 2 li(z), (1)
where N > 1 is the number of nodes (agents) and ¢; : R¢ —
R is a convex objective function of node 7. With the emer-
gence of big data paradigm and the large sensor networks,
solving problem (1) in a centralized manner can be compu-
tationally prohibitive, thus giving rise to the distributed opti-
mization framework. In this framework, every node in a net-
work performs local computations and locally exchanges its
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estimates with the neighbors, whereby at each time step, every
node updates using its own estimates and a weighted combi-
nation of its neighbors’ estimates. In this way, the problem in
(1) is solved using a consensus-type distributed optimization
(DO) method. Starting with [1], various DO algorithms have
been proposed to solve problems of the type presented in (1)
for convex and non-convex problems see [2, 3, 4, 5, 6].

In this paper, we consider the case where each node broad-
casts its estimate to all its neighbors at each time-step. This
exchange of data is vulnerable to noisy transmission media,
non-synchronous clocks, external attacks and insider attacks.
These irregularities may drive the algorithm iterates to a point
in the neighborhood of the optimal point. The attacks are usu-
ally modelled as Byzantine attacks due to the unpredictability
in the behavior of the malicious nodes. We model the ad-
versarial environment in a similar fashion to the Byzantine
generals’ problem [7, 8, 9, 10]. While external attacks may
be mitigated by employing encryption and authentication, ro-
bust distributed algorithms have been developed to overcome
insider attacks [11, 12, 13]. Two algorithms, one based on
coordinate-wise median and another based on coordinate-
wise trimmed mean, have been developed in [14] which are
Byzantine-robust. Another popular approach to attacker sup-
pression involves regularizing the objective function of the
optimization problem (1). In [11] it has been shown that
optimizing the objective cost function regularized by a total
variation term has appealing robustness property to unreliable
agents injecting false values in the network. A drawback in
such an approach is that it is difficult to find the right regu-
larizer for a given attack scenario. Moreover, it is especially
difficult to design a general regularizer that is resilient to any
type of attacks for any network topology.

The detection and localization of malicious nodes in the
network have been extensively studied. In [15] it has been
proposed to detect the malicious nodes based on the discrep-
ancies in convergence times. Another popular approach is the
use of detection theory and hypothesis testing to test for statis-
tical anomalies in the presence of an attacker [16]. A system
theoretic approach is presented in [17]. However, these meth-
ods tend to focus on a specific attack scenario, and require
multiple iterations of the algorithm to detect and localize the
malicious nodes.
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In this paper, we consider a network of agents that aim to
solve problem (1) by implementing the Fast Row-stochastic
Optimization with uncoordinated STep-sizes (FROST) algo-
rithm proposed in [18]. FROST requires a row-stochastic
weights that are locally assigned to the incoming informa-
tion, it does not require coordination of the stepsize selec-
tion among the nodes, and it works in networks with directed
communication links. We consider an approach that lever-
ages the self-healing properties of distributed optimization
where nodes mimic the iterates of FROST but dynamically
sever ties with neighbors that are more likely to be attackers
rather than regular nodes. Every regular node accumulates
evidence about the trends of averaged gradient variations (to
be defined precisely) and uses this evidence to decide on the
neighbors that needs to be excluded from its neighbor set. The
paper is organized as follows. In the forthcoming Section 2,
we describe the network model and the consensus-based opti-
mization algorithm FROST from [18]. In Section 3, we intro-
duce the malicious agents behavior and provide an insight into
the gradient-based signatures they leave behind. In Section 4,
we propose a detection strategy based on a local gradient vari-
ance and present some simulation results that demonstrate the
proposed approach. We conclude in Section 5.

2. NETWORK MODEL AND PROBLEM
FORMULATION

We shall model the agent system by a digraph G = (V, &),
where V := {1,2,..., N} represents the N agents in the sys-
tem and £ C V x V represents the set of directed links. If
(i,5) € &, then node j can receive information from node i;
node i is said to be an in-neighbor of node j. We define the in-
neighborhood of node j byj\/'[; ={ieV:(ij) € EFU{j}.

The set of nodes, V, is divided into two subsets; V), — the
set of regular nodes (RNs) with N,. := |V,| and V), — the
set of malicious nodes (MNs) with N,,, := |V,,| whose ex-
istence (if any) the RNs strive to detect and sever the incom-
ing links from them. The communication network is captured
by a directed graph G = (V, &), where V = V,. U V,, and
E =& UE,, ; & is the set of links that connect RNs, and
&, are directed links that emanate from a malicious node and
end at a regular node, &,, = {(i,j) € E:1 €V, j € V).
Thus, the network has an adjacency matrix A and an inci-
dence matrix E associated to G, = (V,, &) and an adjacency
matrix B and incidence matrix M that are associated with
the bipartite directed graph G,,, = (V, &,,) from the nodes in
Vp, to the nodes in V,..

Consider now a scenario where the regular nodes of the
network are trying to solve the optimization problem:

mm Uz Z li(x;), st. (EIj)x=0, (2)
1€V,
where ¢; : R? — R is the private cost function known only

to agent ¢, and « is a vector obtained by stacking the vec-

tors «;, ¢ = 1,..., N. The equality constraint enforces con-
sensus in x;,Vi € [N], at convergence. Distributed opti-
mization algorithms designed for digraphs typically require
column-stochastic weight matrix to accommodate the push-
sum consensus protocol [19, 20] in combination with the stan-
dard gradient method. Further improvements in the conver-
gence rates of such algorithms are presented in DEXTRA [21]
and ADD-OPT/Push-DIGing [22], while a linear-rate algo-
rithm is presented in [23]. However, these algorithms re-
quire each node to know its out-degrees (the number of its
out-neighbors) which is not a realistic assumption in many
applications. As noted in Section 1, the FROST algorithm
developed in [18] overcomes this constraint.

In the FROST algorithm, at every time step, an agent ¢
maintains three state variable: x;[t], z;[t] € R? and y;[t] €
RY and broadcasts their states to their out-neighbors and re-
ceive their in-neighbors’ states. The update rule at time ¢ 4 1
is as follows:

wilt+1]= ) wijw;lt] - vizilt (32)
jGN
t+1 Z wz]y] (3b)
geNf
izt + 1)) gi(xst])
alt+1 —ZNEU w1 il 0
j

where g;(x;[]) is the gradient of ¢;(x;[-]) evaluated at x;[t],
7 is the step-size of agent ¢, and [W];; = w;;,Vi,j € [N]are
the weights associated with the linear updates with w;; > 0
for all j 6./\/ ,w;; = 0forall j ¢ H,and > wij = 1for

all i € [N]. Next, consider the following conditions:

1. The underlying communication graph is directed and
strongly-connected.

2. Each local function, ¢;, is strongly-convex with Lipschitz-
continuous gradient, i.e., for any 7 and &1, x5 € R?,

(a) there exists a positive constant o such that

Q
Ci(a1)—Ci(22) < gi(ﬂﬂl)T(wl—wz)—§|\w1 —x5|3.

(b) there exists a positive constant 3 such that

lgi(z1) — gi(z2)]l2 < Bllz1 — T2]|2-

3. Each agent in the network has and knows its unique iden-
tifier,e.g., 1,..., N,

When the preceding assumptions are satisfied, the iterates
produced by the FROST method (3) converge to the optimal
(consensual) point * of the problem (2) in the case when all
the nodes are regular, i.e., when V,, = V. However, when
some nodes do not follow the update rule (3) due to vari-
ous reasons such as noisy transmission media or due to the
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Fig. 1. Consensus without attacker detection under a constant
attack scenario.

presence of malicious nodes, the FROST algorithm may con-
verge to a point away from the optimal consensual point or
not converge at all. It is, therefore, important to devise de-
tection strategies to dynamically cut links that emanate from
malicious nodes, i.e., the links in the set &,,.

Since the process of suppression is imperfect, the network
will not reach asymptotically the optimum outcome. Assum-
ing that the algorithm converges, it will most likely converge
to a non-optimal point [oo] # x*, and we can characterize
the regret of the solution x[oo] as follows:

7Z|f xz

" ey,

— Li(z")]. ©)

3. MODELING AND CHARACTERIZATION OF
MALICIOUS NODES’ BEHAVIOR

In this section, we shall discuss the various avenues of attacks
a MN may incorporate. Without a plausible attacker suppres-
sion algorithm in place, the iterations produced by RNs will
converge, albeit to a point where the attackers intend to drive
them to. This can be seen in Figure 1, where the convergence
occurs to a non-optimal point under a constant attack sce-
nario, where the malicious nodes persistently send the same
value to their neighbors. The successful detection of the ma-
licious nodes depends on finding the aberrations in the statis-
tical trends of the information received by the RNs. When the
adversary follows the algorithm but chooses to manipulate its
objective function, assuming that the algorithm converges, let
the limit point be . When the system is not under an attack,
the algorithm will converge to the optimal point *. That is,

T = arg min Z Li(x;), st. (E®Iy)x=
T ev,

T = argminz&(a:i), st. (E® Iz =
T ey

At the point ¢
we have

, since it is optimal point for the latter problem,
Zgi (ma) =0,
=%

implying that

Z gi(z®) = — Z gi(z")

1€Vm 1€V,

If suppose, % = x*+¢, using the Taylor expansion of g; (%)
about *, we have

Zgi(fc J— Z[ () +Hh] (z ZhT Je, (5)
i€Vm i€V, i€V,
where h;(x;[-]) denotes the Hessian of ¢;(x;[-]) evaluated at

x;[t], and we have used the fact that )}, ,, gi(z*) = 0. Let
H := Y., hj(x*). Taking the 2-norm squared on both
sides of the preceding relation, we obtain

1> gi(z"

1€ Vm

)3 ~ | Hell; =" H"He> ||e][3Amm (H'H) .

Thus,

1 iev,, 9i@)E _ Nn(Xiev, l9:(")II2)
)\min (HTH) - )\min (HTH)
N maxiev,, [lgi(z*)|3
Nz)\min (%) .

From the preceding inequality, we see that the strength of the
attack, which the € represents, essentially depends directly on
the total number of attackers and the gradients of the attack-
ers. If an attacker aims to lead the RNs astray by a large e,
it comes at the cost of giving themselves away through their
larger gradient values. Also, it should be noted that to launch
a substantial attack, the ratio of the number of attackers and
the number of regular agents needs to be high.

lell3 <

IN

(6)

4. ESTIMATION OF NEIGHBORS’ GRADIENTS
AND DETECTION STRATEGY

In the preceding section, we saw that the attackers’ action can
result in larger gradient values. Thus, we hypothesize that
significant insight can be gained if we can approximate the
gradient of our neighbor and track it over time relative to the
mean of the gradients of the remaining neighbors. Consider

@j[t] = wylt] —a;[t — 1] = 525t — 1]. )
Letususe z;,Vj € /\/'[;], as an approximation to the gradients
of the neighbors of agent i. Consider the following metric

1
Siylt] = =71 >, allle ®
[2 meN;\{i}

145 [t] — No -1
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which compares each neighbor’s gradient estimate to the av-
erage gradient in the rest of the neighborhood. The running
average of the above metric is given by

;’S’VZ‘]‘ [t] = % Z Sij [T] (9)

Agents keep track of 51-]- over time and, at a sufficiently large
time T' > 0, they sever ties with the agent in their neigh-
borhood with the largest value of S;;[T]. Then, each agent
adjusts its weights w;;’s according to the conditions given in
Section 2 (see below (3)) and resumes the updates with the
reduced neighbor set.

To illustrate our approach, let us consider a parameter
estimation problem where the observations «; are given by
K; = x; + w;, where w; represents the measurement error.
Assume that agent j is an attacker and its attack consists of
modifying its local observation as k" = k; + ;. Then the
local linear least square loss function may be written as:

() = |lzj — (k5 + B)II3, Vi € Vim. (10)

Considering node 7 as an attacker and substituting for the gra-
dient of the loss function of node j in equation (8), we have

Zke/\/[;] \{j}2($k [t]— k)

STt = 12(x;[t] — (ki +B5)) — -
JH 12(x;[t] - (k;+B5)) |’/\/—[i]‘_1 ll2
Y oken\ (1 2(@k[t] — ki)
< 2@ lt-r;) - —— J;m_l 12+21185112
= S5[t] + 2118512- (11)

Now, consider the running average of the metric over time
~ 1 1¢ ~
Siltl=7 D ST SyltH21185112=57; (121185 -
7=0 =0

Thus, there is a clear gap in the magnitude of the metric when
aneighbor exhibits Byzantine tendencies (.S} [t]). Thus using
the metric presented in equation (8), we can identify those
neighbors that exhibit unusual behavior.

Consider the Erd6s—Rényi network with N = 10 nodes
and p = 2.5log(N)/N shown in Figure 2a. In this net-
work, agent 10 (in color red) is a malicious node following
the algorithm but feeding it false measurement data as de-
scribed in equation (10). Let us suppose that the regular nodes
keep a track of the metric for some time 7" > 0 sufficiently
large such that the metric in equation (9) has gathered suf-
ficient information about the behavior of the agents in the
network. At time ¢ = T, the regular nodes sever ties with
their neighbor with the highest magnitude of S;;[77]. In Fig-
ure 3, we wait until 7" = 150 time steps and each agent sev-
ers ties with the outlier in its neighborhood. Thereafter, we
see the self-healing properties of distributed consensus algo-
rithm come into play and the regular nodes converge at the

optimal consensus point. In Figure 2, we plot the residual,
r(t) = 5 Yiey, [li(xi(t)) — £i(x*)], of the optimization
problem on the y-axis over time on the x-axis.

I I I I
100 200 300 400
Time (t)

(a) b)

500 600

Fig. 2. (a) The Erd6s—Rényi random network under consider-
ation. (b) Residual of the optimization problem.
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Fig. 3. Agents’ iterates converge to the optimal point after
attacker suppression.

5. CONCLUSION AND FUTURE WORK

We have proposed a detection strategy to counter Byzantine
attacks in a system of agents trying to solve optimization
problem in a distributed fashion. The strategy is independent
of the network topology and the attack strategy, and makes
use of a tracking a trend in gradient variance locally. Also, we
have presented an upper bound for the strength of the attack
which brought out a direct relationship between the attack
strength and the gradient values for the attackers. Using this
relationship, we hypothesized that it would be possible to
detect the attackers if each agent kept a metric as a function
of its neighbors’ gradients and severs ties with the outliers, at
a sufficiently large time 7'. Future work includes providing
an estimate of the value of 7'. Work is also in progress to
analyze the case of stealth attacks.
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