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ABSTRACT

Distributed estimation of a parameter vector in a network of
sensor nodes with ambiguous measurements is considered.
The ambiguities are modelled by following a set-theoretic ap-
proach, that leads to each sensor employing a non-convex
constraint set on the parameter vector. Consensus can be
used to reach an estimate consistent with the measurements
of all nodes, assuming that such an estimate exists, but un-
fortunately, such an approach leads to a non-convex problem.
Using proper assumptions, the considered problem is decom-
posed into two sub-problems, where one is well studied in lit-
erature and the other is modelled as a non-cooperative game.
An exact potential function is derived for this game, and an
algorithm for its solution is given. Numerical results, consis-
tent with the theoretical findings, demonstrate the efficacy of
the proposed approach.

Index Terms— Distributed parameter estimation, non-
convex optimization, game theory, potential games, spatial
adaptive play

1. INTRODUCTION

The rapid technological progress in electronics and wireless
communications has led to an abundance of miniaturized, net-
worked devices that surround us in our everyday lives. Such
networks of smart agents are becoming part of the so-called
Internet-of-Things (IoT) that promises to revolutionize our
cities [1], the industry [2], the energy grid that obtains a new,
smart form [3], and vehicular networks [4].

The increasingly expanding use of networks of small-
scale electronic devices along with the continuous improve-
ment of their computational and storage capabilities, drive
the demand for efficient distributed algorithms that are able
to confront more and more complex problems that arise in
this setting [5], [6]. Distributed data processing problems
such as parameter estimation, decision making/detection and
learning have been studied by many researchers and various
efficient algorithms have been developed. e.g., [7], [8], [9],
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[10]. Such algorithms alleviate the need for transmitting all
the measurements obtained by the devices to a central com-
puter for further processing and, in many cases, they enjoy no
loss in performance as compared to centralized approaches.
Furthermore, distributed algorithms are in general resilient to
several types of device or network failures, they are scalable
in the sense that minor or no modifications are required when
the network is altered or expanded, and they do not suffer
from the “single point of failure” problem, which is inherent
in centralized architectures [11].

In this work, the problem of efficiently estimating, in a
distributed manner, a parameter vector in a network of sensor
nodes with ambiguous measurements is considered. Ambigu-
ities may arise due to interference, poor calibration, model in-
accuracies or any other cause. The proposed approach is built
upon the set-theoretic estimation methodology [12]. In more
detail, the information that a node can infer from its mea-
surements about the parameter vector, is reduced to that the
vector should lie inside some set, which due to ambiguities, it
can be non-convex. In an attempt to resolve the ambiguities,
the nodes should pursue a consensus [13] on a vector at the
intersection of all such non-convex sets, assuming that this
intersection is non-empty. Note that the existing techniques
cannot handle the case under consideration, i.e., when the un-
known parameter vector lies at the intersection of sets that can
be non-convex. To tackle this problem, we focus on a partic-
ular yet quite general case where the non-convex set at each
node is a union of a finite number of convex sets, and further-
more, we assume that only one such convex set at each node
is relevant to the estimation task. Thus, the original problem
is decomposed into the sub-problem of identifying the rele-
vant convex sets, followed by the sub-problem of identifying
a point at the intersection of a finite number of convex sets,
which has been extensively studied in literature [14], [15],
[16]. Focusing on the first sub-problem, we model it as a
non-cooperative game, we prove that it has an exact potential
function [17], and derive an algorithm for its solution.

1.1. Relation to prior work

In our previous work [18], the considered problem for dis-
tributed estimation from ambiguous measurements was intro-
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duced, and an algorithm that required the organization of the
nodes into a circle was studied. Here we drop this require-
ment, and furthermore follow a completely different, game-
theoretic analysis. Also relevant to this work, are consensus
approaches such as those in [16] and [19], but the main differ-
ence from these approaches is that, here, each node possesses
a non-convex set. In [15], potential games are used to analyse
the consensus problem, considering again convex sets. Fi-
nally, other researchers have also considered potential games
to derive distributed algorithms, but for different problems at
hand [20], [21], [22].

2. PROBLEM FORMULATION

Consider a network of devices (hereafter also termed as
agents), which are interconnected as represented by a graph
G(N , E), where N is the set of nodes of the graph (that rep-
resent agents), and E is the set of edges of the graph, that
represent pairs of agents which are able to communicate di-
rectly. In the following, it is assumed that the considered
graph is connected, i.e., there exists at least one path from
any node to any other node. Let Nn denote the set of agents
adjacent to node n, i.e., the set of nodes that can communicate
directly with node n including node n itself. Consider also
that each agent n ∈ N has obtained a vector of measurements
yn ∈ RM which is somehow related to a parameter vector
θ ∈ RD. In this work, it is assumed that the connection
between the measurements yn of node n and the parameter
vector θ can be expressed as

θ ∈ Cn =

kn⋃
k=1

Sn,k , (1)

where the set Cn may in general be non-convex but it can be
written as a union of a finite number (i.e., kn) of convex sets
Sn,k ⊆ RD. Taking into account the measurements of all
agents, the ultimate scope is to compute a point

θ ∈ C =
⋂
n∈N
Cn , (2)

assuming that the intersection C is non-empty.
The general problem of computing a point in the intersec-

tion of a number of non-convex sets is hard to solve. To this
end, the focus here is on a particular case of the above prob-
lem which, however, is frequently encountered in real appli-
cations. In more detail, to make the problem more tractable,
we introduce the following assumption.

Assumption A1: The intersection C is non-empty. Fur-
thermore, there exists exactly one set Sn,ln for each
node n with

Sn,ln
⋂
C 6= ∅

In other words, there exists exactly one choice in which
each agent n selects one of its convex sets Sn,ln so that
the intersection of all such sets becomes non-empty.

It is easy to verify that, when Assumption A1 holds
true, the intersection of the non-convex sets is given by
C =

⋂
n∈N Sn,ln , and thus C is a convex set, while in general

it may be non-convex. Furthermore, when Assumption A1
holds, the problem (2) is equivalent to solving the follow-
ing two sub-problems: Sub-problem P1: Identify the sets
Sn,ln , n ∈ N , and Sub-problem P2: Compute θ ∈ Sn,ln .

Clearly, sub-problem P2, namely, that of computing a
point in the intersection of a finite number of convex sets, is
a problem well studied in literature [14], [15], [16]. In this
work, we focus on sub-problem P1, and provide a distributed
algorithm for identifying the sets Sn,ln , utilizing the concept
of potential games [17].

3. GAME-THEORETIC ANALYSIS

3.1. Game definition

Consider a non-cooperative game in strategic form [23],
where the set of players is the set of nodes N and the set of
strategies for each node (i.e., the so-called action set) is given
by An = {Sn,1,Sn,2, . . . ,Sn,kn}. That is, a pure (i.e., not
mixed, see Section 3.3) strategy αn ∈ An for node/player
n is the selection of one of its convex sets. A strategy pro-
file α is a selection of strategies, one for each player. It is
useful to define the set of all possible strategy profiles as
A = A1 × A2 . . .AN so that α ∈ A. Also, we can express
any strategy profile α as α = (αn, α−n), where αn denotes
the strategy of node n and α−n denotes the strategies of all
players except player n, in the strategy profile α. To complete
the definition of the considered game, each node has a utility
function un(α), which is defined as

un(α) =
∑
k∈Nn

I(αn, αk) , (3)

where I(Sa,Sb) is an indicator function defined as

I(Sa,Sb) =

 1, if Sa
⋂
Sb 6= ∅

0, otherwise
. (4)

In other words, the utility function counts the number of
neighbouring nodes that have selected a set that has a non-
empty intersection with the set selected by node n. To this
end, the considered utility function promotes the selection of
sets by node n that have more non-empty bilateral intersec-
tions with the sets selected by neighbouring nodes.

Of course, other utility functions are possible. As an ex-
ample, utility functions that yield a higher value for local sets
that have joint (i.e., not bilateral) non-empty intersection with
more sets of neighboring players, would offer a trade-off be-
tween complexity of computation and performance. How-
ever, as such an approach makes the potential function anal-
ysis more difficult, it is not considered here, and will be the
subject of future work.
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3.2. Potential function analysis

Consider the function φ : A → R defined as

φ(α) =
∑
n∈N

∑
k∈Nn

I(αn, αk)

2
. (5)

We will prove that this function constitutes a so-called exact
potential function for the game defined in the previous subsec-
tion. An exact potential function [17], associated with a non-
cooperative game, is a function with the property that when-
ever any single player changes its strategy and thus changes
its utility function, the potential function changes by the ex-
act same amount. Thus, games for which a bounded poten-
tial function exists (i.e., potential games), have the interesting
property that any sequence of selfish, greedy steps, in which
each player increases its utility function, will converge to a
so-called Nash equilibrium of the game, in which no player
has an incentive to change their strategy unilaterally.

To prove that the function in (5) is an exact potential
function for the game defined in the previous, consider
any fixed player l ∈ N , that changes its strategy from
α
(1)
l to α(2)

l . Consider also the respective strategy profiles,
where the strategies of all other players remain fixed, as
α(1) = (α

(1)
l , α−l) and α(2) = (α

(2)
l , α−l). Assume that

when player l follows strategy α(1)
l then its set has bilateral

intersections with neighboring nodes in the set N (1)
l ⊆ Nl

and, respectively, when it follows α(2)
l the set is N (2)

l ⊆ Nl.
Thus, the utility function of player l, before and after the
change of strategy, is given by

ul

(
α(1)

)
=
∣∣∣N (1)

l

∣∣∣ and ul

(
α(2)

)
=
∣∣∣N (2)

l

∣∣∣ . (6)

Consider now the change of the function in (5) as player
l switches its strategy from α

(1)
l to α

(2)
l . We define ∆ =

φ
(
α(2)

)
− φ

(
α(1)

)
and consider that we can limit the outer

summation from n ∈ N to n ∈ Nl, since the players that are
not neighbors of player l do not change their bilateral intersec-
tions and thus their contribution to ∆ is added and subtracted,
to get

∆ =
∑
n∈Nl

∑
k∈Nn

I
(
α
(2)
n , α

(2)
k

)
2

−
I
(
α
(1)
n , α

(1)
k

)
2

 . (7)

Separating the outer summation n ∈ Nl into n = l and n ∈
Nl \ {l}, we have

∆ =
∑
k∈Nl

I
(
α
(2)
l , α

(2)
k

)
2

−
I
(
α
(1)
l , α

(1)
k

)
2


+

∑
n∈Nl\{l}

∑
k∈Nn

I
(
α
(2)
n , α

(2)
k

)
2

−
I
(
α
(1)
n , α

(1)
k

)
2

 .

Finally, limiting the inner summation from k ∈ Nn to k = l,
since all other terms do not contribute to the outer summation,
we have

∆ =

∣∣∣N (2)
l

∣∣∣
2
−

∣∣∣N (1)
l

∣∣∣
2

+

∣∣∣N (2)
l

∣∣∣− 1

2
−

∣∣∣N (1)
l

∣∣∣− 1

2

=
∣∣∣N (2)

l

∣∣∣− ∣∣∣N (1)
l

∣∣∣ , (8)

which concludes our proof, that the function in (5) is an exact
potential function for the considered game. Furthermore, it is
easy to see that the potential function is bounded. In partic-
ular, φ(α) ≤ |E| , ∀α ∈ A, attaining its maximum value
when all players select sets with non-empty bilateral intersec-
tions with the sets selected by all their neighbors.

It is easily observed that, when each player n selects the
strategy αn = Sn,ln , considered in Assumption A1, then the
potential function attains its maximum value. This selection
corresponds to a Nash equilibrium for the considered game,
however other Nash equilibria may exist. A learning algo-
rithm known as Spatial Adaptive Play (SAP) [24], exists that
guarantees that the players will reach the Nash equilibrium
that maximizes the potential function asymptotically with ar-
bitrary high probability. This approach is detailed in the fol-
lowing.

3.3. Solution via spatial adaptive play

Subproblem P1 is naturally modelled as a non-cooperative
game, since it employs entities that make decisions, with in-
terdependent utilities. Furthermore, modeling the problem at
hand as a potential game offers the additional advantage that
there exist many suitable learning algorithms with guaranteed
results [17], [24], [25], [26]. While most algorithms guar-
antee that the player behavior will converge to a Nash equi-
librium, in this work we employ SAP [24], that guarantees
asymptotic convergence to some optimal Nash equilibrium,
i.e., where the potential function attains its maximum value.

SAP considers the so-called mixed strategies, that is, each
player assigns probabilities to its strategies, and selects each
strategy with the given probability. Consider that player n
utilizes a probability mass function (p.m.f.) at time t, given
as pn(t). According to SAP, at each time t > 0, one player
n is randomly chosen (with equal probability for each player)
and it tries to update its strategy from αn(t − 1) to αn(t).
The rest of the players do not alter their strategies at this time
t, that is α−n(t) = α−n(t − 1). Player n randomly selects
a strategy from its action set An, according to pn(t), whose
αn-th entry (αn ∈ An) is given by

pn(t, αn) =
exp (βun(αn, α−n(t− 1))∑

α′
n∈An

exp (βun(α′n, α−n(t− 1))
, (9)

where β ≥ 0 is the so-called exploration parameter, that con-
trols how likely the players are to select a suboptimal strat-
egy. At the extreme case where β = 0, the p.m.f.s become
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Fig. 1. An Illustration of the AoA Estimation Example

uniform, and at the other extreme where β → ∞, the p.m.f.s
give positive probabilities only to those strategies that maxi-
mize the utility functions, a set of strategies known as best-
response strategies, and the learning algorithm leads to the
so-called best-response dynamics.

In a game where all players utilize SAP, it is known that
the stationary distribution is given by [24]

p(α) =
exp (βφ(α))∑

α′∈A exp (βφ(α′))
. (10)

In other words, if the parameter β is sufficiently large, pos-
itive probabilities will be given only to the joint strategies
that maximize the potential function. In particular, in the case
considered in this work, all players will select sets with non-
empty intersections with the sets selected by all their neigh-
boring players asymptotically with arbitrary high probability.

It is interesting to note, however, that in general, ensuring
that all bilateral set intersections are non-empty, at each node,
may not be adequate for the joint intersection of the selected
sets to be non-empty. In other words, the algorithm consid-
ered here may converge to solutions that give positive proba-
bilities to sets that are not the correct ones. Still, since the cor-
rect sets will be also given positive probabilities, it could be
possible that another procedure could be employed to identify
the correct sets, possibly by considering joint intersections at
each node. This approach is the subject of future work.

Finally, considering the so-called Helly’s theorem [27]
(that states that in a finite collection of convex sets X1, X2,
· · · XM , that are all subsets of Rd, with M > d, if all the(
M
d+1

)
collections of d+ 1 sets have non-empty intersections,

then the joint intersection of all sets is non-empty) we can
deduce that in the case where the graph G(N , E) is the com-
plete graph, and the sets Sn,k are one dimensional, then the
bilateral intersections guarantee the existence of the joint in-
tersection, and thus, the proposed approach is guaranteed to
solve problem P1.

4. NUMERICAL RESULTS

To demonstrate the efficacy of the derived scheme, an Angle-
of-Arrival (AoA) estimation example is considered, where a
network of nodes pursue the angle of the direct path while
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Fig. 2. Simulation Results

signal reflections generate ambiguities. An example of the
considered scenario can be seen in Fig. 1. The source signal
is received by each node n from three different paths; directly
and via two reflections, with AoAs denoted as θn,0, θn,1, θn,2
and different received powers. Each node n, estimates the
three AoAs and the corresponding received powers, and as-
sociates a convex set only for the AoAs for which the respec-
tive power exceeds a predefined threshold. The convex sets
are defined using a parameter δ, namely, they are of the form
[θn,k−δ, θn,k+δ]. This parameter designates the uncertainty
of the estimation procedure used for estimating the AoAs and
it is set to δ = 0.2 for this experiment. Thus, in this set-
ting, the relevant convex sets considered in Assumption A1
are those that correspond to the direct path.

We simulated a network ofN = 200 nodes, uniformly de-
ployed in the two dimensional unit square, while the source
was placed at coordinates (35, 35). We performed 40 Monte-
Carlo runs, for various sensor locations, various node com-
munication ranges and values for the parameter β in (9). Only
realizations that resulted to connected graphs were taken into
account. Also, we performed 6000 strategy changes in the
SAP algorithm, for each run. In Fig. 2 the average (across
nodes and runs) probability for selecting the correct sets is
given, as a function of the sensor communication range. We
can see that, in all cases, the probability reaches the value
1, when the communication range is high enough, i.e., when
the communication graph becomes more strongly connected.
Best results were obtained when β increases (starting at 0.001
and increased by 0.0001 after each strategy change), letting
the algorithm “first search, and then converge”.

5. CONCLUSIONS

In this work, a distributed parameter estimation problem that
takes into account ambiguous measurements was considered.
Following a set-theoretic estimation approach, the problem
was modelled as that of computing a point at the intersection
of non-convex sets. Under proper assumptions, the problem
was decomposed into two sub-problems. While the second
problem is well studied in literature, the first one was mod-
elled as a potential game and a suitable algorithm for its con-
frontation was derived. As justified theoretically and via sim-
ulations, the proposed modeling is able to resolve the inherent
measurement ambiguities.
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theorems,” in Handbook of Convex Geometry, Part A,
pp. 389–448. Elsevier, 1993.

5251


		2019-03-18T11:12:35-0500
	Preflight Ticket Signature




