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ABSTRACT

We study distributed processing of subspace-constrained signals in
multi-agent networks with sparse connectivity. We introduce the first
optimization framework based on distributed subspace projections,
aimed at minimizing a network cost function depending on the spe-
cific processing task, while imposing subspace constraints on the
final solution. The proposed method hinges on (sub)gradient tech-
niques while leveraging distributed projections as a mechanism to
enforce subspace constraints in a cooperative and distributed fash-
ion. Asymptotic convergence to optimal solutions of the problem
is established under different assumptions (e.g., nondifferentiability,
nonconvexity, etc.) on the objective function. Finally, numerical
tests assess the performance of the proposed distributed strategy.

Index Terms— Distributed optimization, signal processing, net-
works, subspace projections, convergence analysis.

1. INTRODUCTION

Distributed signal processing aims at performing learning tasks from
data that is naturally distributed over a multi-agent network hav-
ing, typically, a sparse topology [1, 2]. Such inference goals typ-
ically arise in multiple real-world scenarios including, among oth-
ers, wireless sensor networks [1, 3], data mining in peer-to-peer net-
works [4], and mobile edge computing in 5G systems [5]. Common
to these applications is the necessity of performing a completely de-
centralized computation/optimization. For instance, when data are
collected/stored over a distributed network, sharing local informa-
tion with a central processor is either unfeasible or not economi-
cal/efficient, owing to the large size of the network and volume of
data, time-varying network topology, energy constraints, and/or pri-
vacy issues. Due to these reasons, nowadays, the need for fully dis-
tributed inference is recognized as a defining characteristics of many
real-world big data applications [6].

To be more specific, let us consider a network composed of N
sensors, where the i-th node collects a measurement yi of the signal
value xi at its local geographic position. Let x = [x1, . . . , xN ]T be
the vector collecting the signal values at every node of the network.
The gathered measurements {yi}Ni=1 may be highly unreliable due
to observation noise, outliers, missing data, or low energy level. A
way to recover reliability is to properly fuse the measurements col-
lected over all the network in order to achieve globally optimal esti-
mates. This is possible if the environment monitored by the network
exhibits correlations, which is typically the case in many physical
fields of interest. In mathematical terms, this means that the ob-
served signal field belongs to a low-dimensional subspace, i.e., the
vector x can be cast as:

x = Us, (1)

where U is an N × r matrix, with r ≤ N , and s is an r × 1 col-
umn vector. The columns of U are assumed to be linearly indepen-

dent and thus constitute a basis spanning the useful signal subspace.
In many applications, the useful signal is a smooth function, which
can be very well modeled by choosing the columns of U as the low
frequency components of the Fourier basis, for example. In prac-
tice, the dimension r of the useful signal subspace is typically much
smaller than the dimension N of the observation space.

In this paper, we consider a broad family of signal processing
tasks that can be written as instances of the following subspace-
constrained optimization framework:

min
x

f(x;y) =

N∑
i=1

fi(xi; yi) (2)

subject to x ∈ R(U)

where f(·) is the separable network objective function, whose partic-
ular structure depends on the specific processing task at hand (exam-
ples follow); and R(U) denotes the range space of the full-column
rank matrix U, i.e., the subspace where x lies. The framework in
(2) subsumes different signal processing tasks. Of course, because of
space limitation, we cannot discuss here all possibilities. We provide
next just a few instances of practical signal processing applications
that fall in the general framework (2).
Example #1 - Noise reduction via subspace projection. Given noisy
measurements {yi}Ni=1 of the signal values {xi}Ni=1, a fundamen-
tal task is to “clean” the observations as much as possible reducing
the effect of noise. A strong noise reduction may be obtained by
computing the least square estimator for x, which reads as:

x̂ = argmin
x
‖y − x‖22 (3)

subject to x ∈ R(U).

Problem (3) is clearly an instance of the framework in (2), and its
optimal solution is given by the projection of the observation vector
y = [y1, . . . , yN ]T onto the signal subspace:

x̂ = PR(U)y = U
(
UTU

)−1

UTy, (4)

where

PR(U) = U
(
UTU

)−1

UT (5)

is the operator that projects onto the subspaceR(U).
Example #2 - Interpolation of bandlimited signals. A fundamental
task in signal processing is interpolation, which emerges whenever
cost constraints limit the number of nodes that we can directly ob-
serve. Having assumed that x lies on low-dimensional subspace is
equivalent to impose a bandlimited assumption, which is instrumen-
tal to guarantee perfect reconstruction from a subset of observations.
Let us consider sampling with no additive noise, which gives rise to

5242978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



the observations: yi = dixi, i = 1, . . . , N , with di = 1 for i ∈ T ,
where T ∈ V represents the sampling set; and di = 0 for i /∈ T .
Given the sampled vector y, the goal is to interpolate of the signal
over unobserved vertices, which can be cast as the solution of the
following optimization problem:

x̂ = argmin
x
‖D(y − x)‖22 (6)

subject to x ∈ R(U).

where D = diag(d1, . . . , dN ) is the sampling operator. Again, (6)
can be seen as an instance of (2). Being general, the formulation in
(6) includes also graph signal interpolation as a particular case [7].
Example #3 - Outlier rejection via `1 minimization. Let us consider
now the case where a subset C of nodes is strongly corrupted by
noise, e.g., because they are damaged or highly interfered. In such
a case, we have yi = xi + qivi, i = 1, . . . , N , with qi = 1 for
i ∈ C, and qi = 0 otherwise. We also assume that the noise vec-
tor v = {vi}Ni=1 is arbitrary but bounded, i.e., ‖v‖1 < ∞. The
task in this case is the exact recovery of a bandlimited signal x, ir-
respectively of noise, when the location of the noisy observations is
not know apriori. In such a case, we may resort to a constrained
`1-norm minimization, which reads as:

x̂ = argmin
x
‖y − x‖1 (7)

subject to x ∈ R(U).

Problem (7) is an instance of (2), and its solution allows perfect re-
covery of the bandlimited signal x if the number of corrupted nodes
is not too large, see, e.g., [8].
Related Works and Contributions. Exploiting (1), in the previ-
ous literature, the task in (2) was tackled solving an equivalent con-
sensus optimization problem [9], where nodes aim to estimate s in
(1) in a cooperative manner. Distributed solution methods for con-
vex instances of consensus optimization problems have been widely
studied in the literature; they are usually either primal (sub)gradient-
based methods or primal-dual schemes. Algorithms belonging to
the former class include: i) consensus-based (sub)gradient schemes
[10–13]; ii) the (sub)gradient push-method [14]; iii) the dual-average
method [15]. Algorithms for adaptation and learning tasks based on
in-network diffusion techniques were proposed in [16–18]. The sec-
ond class of distributed algorithms is that of dual-based techniques.
Among them, we mention here only the renowned Alternating Di-
rection Method of Multipliers (ADMM); see [9] for a recent survey.
Distributed ADMM algorithms tailored for specific signal process-
ing tasks in sensor networks were proposed in [19–21]. The liter-
ature related to nonconvex distributed optimization is much more
scarce, and we are aware of only a few important works [22–27].

In this paper, we consider a different perspective that departs
from the conventional approach of solving consensus optimization
problems. We approach directly problem (2), even if (2) does not ap-
pear as a canonical distributed optimization problem because of the
(coupled) subspace constraint x ∈ R(U). To this aim, for the first
time in the literature, we propose a novel algorithmic framework that
merges distributed subspace projection methods from [28] with opti-
mization theory, in order to solve problem (2) in a distributed fashion
by enforcing the subspace constraint via local cooperation among
the network agents. We will term this new method as Distributed
Subspace Projected Optimization (DiSPO). Then, we provide a
detailed convergence analysis for DiSPO, which proves its conver-
gent behavior for different properties [e.g., (non)differentiability,
(non)convexity, etc.] of the objective function in (2). Finally, nu-
merical results corroborate the theoretical findings and assess the
performance of the proposed distributed method.

2. DISTRIBUTED SUBSPACE PROJECTIONS

In this section we recall and extend the theory related to distributed
subspace projections [28, 29], which will form the basic block for
the development of the proposed distributed algorithm. The opera-
tion performed in (4) corresponds to the orthogonal projection of the
observation vector y onto the subspace spanned by the columns of
U. Assuming, without any loss of generality (w.l.o.g.), the columns
of U to be orthonormal, the projector simplifies in

x̂ = UUTy = PR(U)y. (8)

The aim of this section is to set up a distributed procedure where
each node initializes a state variable with the local measurement, let
us say xi[0] = yi, and then it evolves by interacting with nearby
nodes in order to compute (8). Let us then assume that the nodes
are connected through a communication network described by the
weight matrix W = {wij}Ni,j=1 ∈ RN×N , whose sparsity pattern
describes its topology, i.e., wij = 0 if nodes i and j do not share a
link. Letting Ni be the set of neighbors of node i, we have wij 6= 0
for j ∈ Ni ∪ {i}, and wij = 0 otherwise. Then, denoting by x[k]
theN -size vector containing the states of all the nodes at iteration k,
we let evolve the network state according to:

x[k + 1] = Wx[k], with x[0] = y. (9)

Clearly, (9) is a distributed procedure because, thanks to the sparsity
of W, each node has to interact only within its neighborhood at each
iteration. Now, given the interaction mechanism (9), our problem is
twofold: 1) guarantee that system (9) converges to the desired vector
(8); 2) Find the sparse matrix W, under a topological constraint, so
that the convergence time is minimized. The first point is analyzed
in the following proposition.

Proposition 1 For any y ∈ RN , the dynamical system (9) admits a
unique globally stable solution given by PR(U)y if and only if:

(C1) WPR(U) = PR(U)

(C2) PR(U)W = PR(U)

(C3) ρ(W − PR(U)) ≤ β < 1

with ρ(·) denoting the spectral radius operator.

Proof. The proof can be found in [30].
Remark 1. Conditions (C1)-(C3) have an intuitive interpretation.
(C1) and (C2) state that, if system (9) asymptotically converges,
then it is guaranteed to converge to the desired value. In fact, (C1)
guarantees that the projection of vector y ontoR(U) is an invariant
quantity for the dynamical system. At the same time, (C2) makes
PR(U)y a fixed point of matrix W, and thus a potential accumula-
tion point for the sequence x[k]. Then, condition (C3) guarantees
convergence to the fixed point PR(U)y, by imposing that all the
modes associated to the eigenvectors orthogonal toR(U) decay ex-
ponentially with a speed dictated by ρ(W − PR(U)).

The second problem is how to to design a weight matrix
W = {wij}Ni,j=1 ∈ RN×N that asymptotically projects onto
the desired subspace R(U) with maximum convergence rate, while
having a sparsity pattern imposed by a given communication graph
G = (V, E). This problem was already tackled in [28], where the
same design objective considered here was pursued, but assuming a
particular structure of the weight matrix given by W = I− εL. The
method proposed in [28] then proceeds by optimizing jointly the pa-
rameter ε and the generalized Laplacian L. Here, we generalize the
approach in [28], considering matrices W not necessarily adhering
to the Laplacian based model. Thus, following the approach of [31],
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but extending it to enable general subspace projections, we consider
the following optimization problem:

min
W

ρ(W − PR(U))

subject to WPR(U) = PR(U) (10)

W = WT

wij = 0 for all (i, j) /∈ E .

The minimization of the objective function in (10) aims at maximiz-
ing the convergence rate of the distributed subspace projection oper-
ator. The first and second constraints in (10) impose the conditions
(C1) and (C2) on the symmetric matrix W, in order to guarantee
convergence to the desired subspace. Finally, given the set of edges
E of the communication graph among the nodes, the last constraint in
(10) imposes a sparsity pattern to matrix W that reflects the network
topology. Notice that, differently from [28], the weight matrix de-
signed by (10) does not require to be built using a Laplacian model,
i.e., as W = I − εL. It is easy to check that the optimization in
(10) is a convex problem [32], whose global optimal solution can be
found using efficient numerical algorithms.

3. DISTRIBUTED SUBSPACE PROJECTED
OPTIMIZATION

In this section, we derive a distributed solution method for the class
of problems in (2). To this aim, we exploit the asymptotic conver-
gence properties of the projection matrix W that we designed in the
previous section. In particular, note that, from conditions (C1) and
(C2), the constraint x ∈ R(U) in (2) can be equivalently recast as
x ∈ Null(I −W), or, equivalently, (I −W)x = 0. Then, we
proceed as in penalty optimization methods [33], thus converting the
constrained optimization in (2) into a sequence of penalized uncon-
strained problems, which at time k are given by1:

min
x

f(x;y) +
1

2µ[k]
xT (I−W)x (11)

where {µ[k]}k is a positive non-increasing sequence of scalar pa-
rameters, which helps to force the constraint x ∈ Null(I −W) as
k →∞. In our implementation, at each iteration k, we use one step
of gradient descent applied to (11), where {µ[k]}k takes the role of
a step-size sequence, thus obtaining the following recursive rule:

x[k + 1] = Wx[k]− µ[k]∂f(x[k]). (12)

Now, assuming the objective function is separable [cf. (2)], each
element of the the (sub)gradient in (12) depends solely on its cor-
responding variable, i.e., ∂f(x[k];y) = {∂fi(xi[k])}Ni=1. Exploit-
ing this property and, thanks to the sparsity of matrix W, the re-
cursion (12) enjoys the distributed implementation illustrated in Al-
gorithm 1. From now on, we shall refer to Algorithm 1 as Dis-
tributed Subspace Projected Optimization (DiSPO). DiSPO requires
that each node i combines its local estimate xi with those of its spa-
tial neighbors, i.e., {xj [k]}j∈Ni , using the weighting coefficients
{wij}. Then, (sub)gradient information of the local loss function is
exploited in order to drive the algorithm toward the optimal solution
of (2). Algorithm 1 has very low complexity: it requires only |Ni|+1
scalar multiplications and sums per iteration. From a communication
point of view, each node needs to exchange only one scalar parame-
ter with its neighbors per iteration. This makes a fundamental differ-
ence with respect to consensus-based methods, whose computational

1Note that, if C1-C3 hold, ρ(W) = 1 and I−W is positive semidefinite.

Algorithm 1: Distributed Subspace Projected Optimization

Data: xi[0] chosen at random for all i; {wij}i,j satisfying (C1)-
(C3); step-size sequence {µ[k]}k. Then, for each time k ≥ 0 and
for each node i = 1, . . . , N , repeat:

xi[k + 1] =
∑

j∈Ni∪{i}

wijxj [k]− µ[k]∂fi(xi[k]) (13)

and communication burdens typically scale with the dimension r of
the signal subspace, i.e., the dimension of vector s in (1).

4. CONVERGENCE ANALYSIS

In this section, we illustrate the convergence properties of the pro-
posed DiSPO Algorithm. Our goal is to develop an algorithm that
converges to stationary solutions of Problem (2) while being imple-
mentable in the above distributed setting.

Proposition 2 A point x∗ ∈ R(U) is a stationary solution of Prob-
lem (2) if a (sub)gradient ∂f(x∗) exists such that

PR(U)∂f(x
∗) = 0. (14)

Let S be the set of stationary solutions of (2). We consider the
following assumptions on problem (2), which will characterize S.
Assumption A [On function f in (2)]: f satisfies a proper combina-
tion of the following properties, where (A1-1) and (A1-2) have to
be considered as alternative, i.e., f satisfies either (A1-1) or (A1-2).
(A2) can be used in combination with (A1-1) or (A1-2) [cf. Theorem
1]. (A3) holds true in any case.

(A1-1) f is a nondifferentiable, convex function;

(A1-2) f is a differentiable, (possibly) nonconvex function, with
Lipshitz continuous gradient, i.e.,

‖∂f(x)− ∂f(x)‖ ≤ L‖x− y‖, for all x, y;

(A2) f has bounded (sub)gradients, i.e., there exists G > 0 such
that ‖∂f(x)‖ ≤ G for all x.

(A3) f is coercive, i.e., lim
‖x‖→∞

f(x) = +∞.

Assumption A is standard and satisfied by many practical problems.
Under (A1-1), S is the set of globally optimal solutions of (2); oth-
erwise, if (A1-2) holds, S is the set of stationary points of (2). (A2)
is a technical assumption typically used in several papers to prove
convergence of distributed optimization algorithms, see, e.g., [10–
12, 23, 24, 27]. Assumption (A3) guarantees the existence of a so-
lution of problem (2) by ensuring that function f is bounded from
below. Finally, in this paper, we consider two alternative choices for
the step-size sequence {µ[k]}k in Algorithm 1, which are illustrated
in the following assumption.
Assumption B [On the step-size]: The sequence {µ[k]}k can be:

(B1) a constant, i.e., µ[k] = µ > 0 for all k;

(B2) a diminishing sequence2 chosen such that µ[k] > 0, for all k,
∞∑

k=0

µ[k] =∞ and
∞∑

k=0

µ[k]2 <∞.

2This assumption is very common in the literature of stochastic optimiza-
tion, adaptive control, and filtering [34].
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We are now ready to illustrate the convergence properties of
DiSPO, which are summarized in the following Theorem.

Theorem 1 Let {x[k]}k be the sequence generated by Algorithm 1,
and let {x[k]}k , {PR(U)x[k]}k be its projection onto the sub-
space R(U). Suppose that conditions (A3) and (C1)-(C3) hold.
Then, the following results hold.

(a) [subspace projection]: Let (A2) hold true. Under
(B1), the sequence {x[k]}k satisfies:

lim
k→∞

‖x[k]− x[k]‖ = O(µ); (15)

if (B2) holds, the sequence {x[k]}k asymptotically converges
to the subspaceR(U), i.e.,

lim
k→∞

‖x[k]− x[k]‖ = 0; (16)

(b) [Convergence for nondifferentiable convex
functions]: Let (A2) hold true. Under (A1-1), let
x∗ ∈ S be a a global optimum of (2); let f∗ = f(x∗)

and fbest[k] = inf
n=1,...,k

f(x[n]). Then, under (B1), we

have:
lim
k→∞

fbest[k]− f∗ = O(µ); (17)

if (B2) holds, we obtain:

lim
k→∞

fbest[k] = f∗. (18)

(c) [Convergence for differentiable nonconvex
functions]: Let

J(x) = f(x;y) +
1

2µ
xT (I−W)x (19)

be a Lyapunov potential function [cf. (11)],

g[k] = ‖∂f(x[k])‖2PR(U)
(20)

be a performance metric that quantifies proximity to a station-
ary solution of (2) [cf. (14)], and let gbest[k] = inf

n=1,...,k
g[n].

Thus, under (A1-2), if 0 < µ < L−1(1 + λN (W)), the se-
quence {x[k]}k converges to a stationary point of (19), i.e.,

lim
k→∞

∂J(x[k]) = 0. (21)

Let also (A2) hold true. Then, under (B1), we have:

lim
k→∞

gbest[k] = O(µ); (22)

if (B2) holds, we obtain:

lim
k→∞

g[k] = 0, (23)

i.e., the sequence {x[k]}k converges to a stationary solution
of Problem (2).

Proof. The proof can be found in [30].
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Fig. 1: Normalized mean squared error versus iteration index, for
different selection of the step-size sequence µ[k].

5. NUMERICAL RESULTS

In this section, we customize the proposed framework to a specific
distributed signal processing task, which entails signal recovery in
the presence of strong impulsive noise [cf. (7)]. Let us consider a
network composed of N = 60 nodes uniformly deployed over a 2D
grid. The network aims to recover a signal field xo that lies on a
subspace composed by the 2D Fourier components up to order 5. A
(randomly chosen) subset of |C| = 20 observations are corrupted by
a large impulsive noise, considering a signal to noise ratio equal to
-20 dB. Under such setting, we are in the conditions of perfect signal
recovery, which can be obtained by solving problem (7), see [8]. The
communication pattern among the nodes was generated according to
a small world random graph model, with average node degree equal
to 10 and rewiring probability given by 0.2; the weight matrix W
was found solving (10). In Fig. 1, we illustrate the temporal behavior
of the normalized mean squared error, i.e., E{‖x[k]−xo‖2/‖xo‖2},
averaged over 100 independent simulations, obtained by the DiSPO
algorithm considering different choices for the step-size sequence
{µ[k]}k. As we can notice from Fig. 1, using constant step-sizes, the
algorithm converges to a final solution that is closer to the optimal
vector xo if we select a smaller step value, at the cost of a slower
convergence time. On the other side, if we use the diminishing step-
size rule µ[k] = 0.1/k [cf. (B2)], from Fig. 1 we notice how the
algorithm keeps learning over time, thus asymptotically converging
to the true signal xo, which represents the optimal solution of the
centralized problem (7). These numerical results are completely in
line with the theoretical findings of Theorem 1 [cf. (17)-(18)].

6. CONCLUSIONS

In this paper we have introduced DiSPO, a novel algorithmic frame-
work for distributed processing of subspace-constrained signals over
networks. DiSPO exploits (sub)gradient optimization techniques
while leveraging distributed projections as a mechanism to enforce
subspace constraints in a distributed fashion. A detailed theoreti-
cal analysis illustrates the convergence properties of DiSPO under
several assumptions on the objective function and the step-size se-
quence. Numerical results confirm the theoretical findings and as-
sess the performance of the method. In this work, we have still as-
sumed a centralized computation of the weights {wij} to implement
distributed subspace projections. A future interesting development
will be to derive distributed methods to get the mixing matrix W.
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