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ABSTRACT
This paper considers optimization problems over networks where
agents have individual objectives to meet, or individual parameter
vectors to estimate, subject to subspace constraints that enforce the
objectives across the network to lie in a low-dimensional subspace.
This constrained formulation includes consensus optimization as a
special case, and allows for more general task relatedness models
such as smoothness. While such formulations can be solved via
projected gradient descent, the resulting algorithm is not distributed.
Motivated by the centralized solution, we propose an iterative and
distributed implementation of the projection step, which runs in
parallel with the gradient descent update. We establish that, for
small step-sizes µ, the proposed distributed adaptive strategy leads
to small estimation errors on the order of µ.

Index Terms—Distributed optimization, subspace projection,
gradient noise.

I. INTRODUCTION
Distributed inference allows a collection of interconnected agents

to perform parameter estimation tasks from streaming data by rely-
ing solely on local computations and interactions with immediate
neighbors. Most prior literature focuses on consensus problems,
where agents with separate objective functions need to agree on a
common parameter vector corresponding to the minimizer of the
aggregate sum of the individual costs [1]–[8]. In recent years, there
has been interest in learning algorithms that operate over multitask
networks, where agents need to estimate and track multiple objec-
tives simultaneously [9]–[17]. Although agents may generally have
distinct, though related, tasks to perform, they may still be able
to capitalize on inductive transfer of information between them
to improve estimation accuracy. Therefore, existing strategies to
address multitask problems generally exploit prior knowledge on
how the tasks across the network relate to each other. For example,
one way to model relationships among tasks is to formulate convex
optimization problems with appropriate co-regularizers between
neighboring agents [10]–[13]. In other applications, it may happen
that the parameter vectors to be estimated at neighboring agents
are related according to a set of linear equality constraints [9],
[14]–[16].

In this work, we consider inference problems over networks
where each agent seeks to minimize an individual cost expressed as
the expectation of some loss function. The collection of parameter
vectors to be estimated across the network is required to lie in
a low-dimensional subspace. That is, we consider a connected
network of N nodes and let wk ∈ RMk denote some parameter
vector at node k. We also let W = col{w1, . . . , wN} denote
the collection of parameter vectors from across the network. We
associate with each agent k a differentiable strongly-convex cost
Jk(wk) : RMk → R, which is expressed as the expectation of some
loss function Qk(·) and written as Jk(wk) = EQk(wk;xk), where
xk denotes the random data. The expectation is computed over the
distribution of the data (note that, in our notation, we use boldface
letters for random quantities and normal letters for deterministic
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quantities). Let M =
∑N
k=1 Mk. We consider convex constrained

optimization problems of the form:

W
? = arg min

W

N∑
k=1

Jk(wk),

subject to W ∈ R(U),

(1)

where R(·) denotes the range space operator, and U is an
M × P full-column rank matrix with P � M . Each agent
k is interested in estimating the k-th Mk × 1 subvector w?k of
W? = col{w?1 , . . . , w?N}. In order to solve (1) iteratively, the
gradient projection method can be applied [18]:

Wi = PU

(
Wi−1 − µ col {∇wkJk(wk,i−1)}Nk=1

)
, i ≥ 0, (2)

where Wi = col{w1,i, . . . , wN,i} is the estimate of W? at iteration
i, µ > 0 is a small step-size parameter, ∇wkJk(·) is the gradient
of Jk(·), and PU is the projection matrix onto R(U).

We are particularly interested in solving the problem in the
stochastic setting when the distribution of the data xk is generally
unknown. This means that the risks Jk(·) and their gradients
∇wkJk(·) are unknown. As such, approximate gradient vectors
need to be employed. A common construction in stochastic ap-
proximation theory is to employ the following approximation at
iteration i:

∇̂wkJk(wk) = ∇wkQk(wk;xk,i), (3)

where xk,i represents the data observed at iteration i. The dif-
ference between the true gradient and its approximation is called
gradient noise. This noise will seep into the operation of the
algorithm and one main challenge is to show that despite its
presence, agent k is able to approach w?k asymptotically.

Although the gradient update in (2) can be performed locally at
agent k, the projection operation requires a fusion center. To see
this, let us introduce an intermediate variable ψk,i at node k:

ψk,i = wk,i−1 − µ∇wkJk(wk,i−1). (4)

After evaluating ψk,i locally, each agent at each iteration needs to
send its estimate ψk,i to a fusion center, which performs the projec-
tion operation in (2) by computing Wi = PUcol{ψ1,i, . . . , ψN,i},
and then sends the resulting estimates wk,i back to the agents.
While centralized solutions can be powerful, decentralized solutions
are more attractive since they are more robust and respect the
privacy policy at each agent [2]. Thus, a second challenge we face
in this paper is how to carry out the projection through a distributed
network, with no fusion center, using a network where each node
performs local computations and exchanges information only with
its neighbors.

We propose an adaptive and distributed iterative algorithm
allowing each agent k to converge, in the mean-square-error sense,
within O(µ) from the solution w?k of (1), for sufficiently small µ.
Conditions on the network topology and signal subspace ensuring
the feasibility of a distributed implementation will be provided. We
also show how some well-known network optimization problems,
such as consensus optimization [1]–[3] and multitask smooth
optimization [10], [11], can be recast in the form (1) and addressed
with the strategy proposed in this paper.
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II. DISTRIBUTED INFERENCE
We move on to propose and study a distributed solution for

solving (1) with a continuous adaptation mechanism. The solution
must rely on local computations and communications with imme-
diate neighborhood, and operate in real-time on streaming data. To
proceed with the analysis, one of the challenges we face is that the
projection in (2) requires non-local exchange of information. Our
strategy is to replace the M ×M projection matrix PU in (2) by
an M ×M matrix A that satisfies the following conditions:{

lim
i→∞

Ai = PU , (5)

Ak` = [A]k` = 0, if ` /∈ Nk and k 6= `, (6)

where [A]k` denotes the (k, `)-th block of A of dimension
Mk × M` and Nk denotes the neighborhood of agent k, i.e.,
the set of nodes connected to agent k by an edge. The sparsity
condition (6) characterizes the network topology and ensures local
exchange of information at each time instant i. By replacing the
projector PU in (2) by A and the true gradients ∇wkJk(·) by
their stochastic approximations, we obtain the following distributed
adaptive solution at each agent k:{

ψk,i = wk,i−1 − µ∇̂wkJk(wk,i−1),
wk,i =

∑
`∈Nk

Ak`ψ`,i,
(7)

where we used condition (6), and where ψk,i is an intermediate
estimate andwk,i is the estimate of w?k at agent k and iteration i. As
we shall see in Section IV, condition (5) helps ensure convergence
toward the optimum. Necessary and sufficient conditions for the
matrix equation (5) to hold are given in the following lemma.

Lemma 1. The matrix equation (5) holds, if and only if, the
following conditions on the projector PU and the matrix A are
satisfied:

APU = PU , (8)
PUA = PU , (9)

ρ(A−PU) < 1, (10)

where ρ(·) denotes the spectral radius of its matrix argument. It
follows that anyA satisfying condition (5) has one as an eigenvalue
with multiplicity P , and all other eigenvalues are strictly less than
one in magnitude.

Proof. Proof omitted due to space limitations. The arguments are
along the lines developed in [7] for distributed averaging with
proper adjustments to handle general subspace constraints.

Since U is an M ×P full-column rank matrix, the projector PU

onto the P -dimensional subspace of RM spanned by the columns
of U is given by:

PU = U(U>U)−1U>. (11)

If we replace PU by (11), conditions (8) and (9) reduce to:

AU = U , (12)

U>A = U>. (13)

Condition (12) states that the columns of U are right eigenvectors
of A associated with the eigenvalue 1. Condition (13) states that
the rows of U> are left eigenvectors of A associated with the
eigenvalue 1.
Remark 1–Distributed consensus optimization: Let Mk = L for
all agents. If we set in (1) P = L and U = 1√

N
(1N ⊗ IL), where

1N is the N × 1 vector of all ones and ⊗ denotes the Kronecker
product operation, then solving problem (1) will be equivalent to
finding at each node k the L× 1 vector w? that solves:

w? = arg min
w

N∑
k=1

Jk(w), (14)

which corresponds to the minimizer of the aggregate sum of
individual costs. Problems of the form (14) have been well studied
in the literature of consensus optimization [1]–[6]. Different algo-
rithms for solving (14) have been proposed. Diffusion strategies are
particularly attractive due to their enhanced adaptation performance
and stability [1]–[3]. When the network is strongly connected, by
picking any N ×N doubly-stochastic matrix A = [ak`] satisfying:

ak` ≥ 0, A1N = 1N , 1
>
NA = 1

>
N , ak` = 0 if ` /∈ Nk and k 6= `

(15)
the diffusion strategy for solving (14) takes the form [1]–[3]:{

ψk,i = wk,i−1 − µ∇̂wkJk(wk,i−1),
wk,i =

∑
`∈Nk

ak`ψ`,i.
(16)

Observe that strategy (16) can be written in the form of (7) with
Ak` = ak`IL and A = A ⊗ IL. It can be verified that, when
A satisfies conditions (15) over a strongly connected network, the
matrix A = A⊗IL will satisfy conditions (6), (12), (13), and (10).
Similarly, with a proper selection of U , multitask inference prob-
lems with overlapping parameter vectors [9] can also be recast in
the form (1).
Remark 2–Distributed inference under smoothness: Let Mk =
L for all agents. In such problems, each agent k in the network
has an individual cost Jk(wk) to minimize subject to a smoothness
condition over the graph. The smoothness requirement softens the
transition in the tasks {wk} among neighboring nodes and can be
measured in terms of a quadratic form of the graph Laplacian [11]:

S(W) = W>LW =
1

2

N∑
k=1

∑
`∈Nk

ck`‖wk − w`‖2, (17)

where L = Lc⊗IL with Lc = diag{C1N}−C denoting the graph
Laplacian. The matrix C = [ck`] is an N×N symmetric weighted
adjacency matrix with ck` ≥ 0 if ` ∈ Nk and ck` = 0 otherwise.
The smaller S(W) is, the smoother the signal W on the graph is.
Since Lc is symmetric positive semi-definite, it can be decomposed
as Lc = V ΛV > where Λ = diag{λ1, . . . , λN} with λm the non-
negative eigenvalues ordered as 0 = λ1 ≤ λ2 ≤ . . . ≤ λN and
V = [v1, . . . , vN ] is the matrix of orthonormal eigenvectors. When
the graph is connected, there is only one zero eigenvalue with
corresponding eigenvector v1 = 1√

N
1N [19]. Using the eigenvalue

decomposition L = (V ΛV >)⊗ IL, S(W) can be written as:

S(W) = W>(Λ⊗ IL)W =
N∑
m=1

λm‖wm‖2, (18)

where W = (V > ⊗ IL)W and wm = (v>m ⊗ IL)W. Given that
λm ≥ 0, the above expression shows that W is considered to be
smooth if ‖wm‖2 corresponding to large λm is negligible. Thus,
for a smooth W, S(W) will be equal to

∑p
m=1 λm‖wm‖

2 with
p � N . By choosing U = U ⊗ IL where U = [v1, . . . , vp],
the smooth signal W will be in the range space of U since it can
be written as W = Us with s = col{w1, . . . , wp}. Therefore,
distributed inference problems under smoothness can be recast in
the form (1).

III. FINDING A COMBINATION MATRIX A
In some cases, one may find a family of matrices A satisfying

conditions (10), (12), and (13) under the sparsity constraints (6).
For example, in consensus optimization where U = 1√

N
(1N⊗IL),

by ensuring that the underlying graph is strongly connected and by
choosing any doubly stochastic A satisfying the sparsity constraints,
the resulting matrixA = A⊗IL will satisfy the required conditions.
In general, finding an A satisfying conditions (5) and (6) is a
challenging problem. Not all network topologies satisfying (6) guar-
antee the existence of an A satisfying condition (5). For the purpose
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of this work, we shall assume that the sparsity constraints (6) and
the signal subspace lead to a feasible problem.

Assumption 1. The problem of finding an A satisfying con-
straints (6), (10), (12), and (13) is assumed to be feasible.

As a remedy for the violation of Assumption 1, one may increase
the connectivity of the network (i.e., add more links) [17].

In the simulations section, we shall find an A by solving the
following constrained spectral norm minimization problem:

minimize
A

‖A − PU‖

subject to AU = U ,
U>A = U>,
[A]k` = 0, if ` /∈ Nk and k 6= `.

(19)

The convex spectral norm is used instead of the non-convex
spectral radius function. Since the spectral radius of a matrix is
upper bounded by any of its norms, minimizing ‖A − PU‖ is
equivalent to minimizing an upper bound on ρ(A − PU). For
symmetric A, we have ‖A − PU‖ = ρ(‖A − PU‖). Since the
objective in (19) is convex and the constraints are linear equalities,
the problem is convex. It can be expressed as a semidefinite
program (SDP) and solved efficiently [7], [20], [21].

IV. STOCHASTIC PERFORMANCE ANALYSIS
Since the iterates wk,i generated by algorithm (7) are random,

we shall measure performance by examining the average squared
distance between wk,i and w?k, lim supi→∞ E‖w?k −wk,i‖2. We
analyze (7) under conditions (6), (10), (12), and (13) on A, and
the following assumptions on the risks {Jk(·)} and on the gradient
noise processes {sk,i(·)} defined as:

sk,i(w) , ∇wkJk(w)− ∇̂wkJk(w). (20)

As explained in [1]–[3], these conditions are satisfied by many
objective functions of interest in learning and adaptation such as
quadratic and logistic risks. Besides, regularization is a common
technique to ensure strong convexity.

Assumption 2. The individual costs Jk(wk) are assumed to be
twice differentiable and strongly convex such that:

0 < λk,minIMk ≤ ∇
2
wk
Jk(wk) ≤ λk,maxIMk , (21)

where λk,min > 0 for k = 1, . . . , N .

Assumption 3. The gradient noise process defined in (20) satisfies
for any w ∈ F i−1 and for all k, ` = 1, . . . , N :

E[sk,i(w)|F i−1] = 0, (22)

E[‖sk,i(w)‖2|F i−1] ≤ β2
k‖w‖2 + σ2

s,k, (23)

for some β2
k ≥ 0, σ2

s,k ≥ 0, and where F i−1 denotes the filtration
generated by the random processes {w`,j} for all ` = 1, . . . , N
and j ≤ i− 1.

Without loss of generality, we shall introduce the following
assumption on the matrix U .

Assumption 4. The full-column rank matrix U in (1) is assumed
to be semi-orthogonal, i.e., its column vectors are orthonormal and
U>U = IP .

Theorem 1. (Network mean-square-error stability) Consider
a network of N agents satisfying Assumption 1 and running
the distributed strategy (7) with a matrix A satisfying condi-
tions (6), (10), (12), and (13). Under Assumptions 2, 3, and 4,
the network is mean-square-error stable for sufficiently small step-
sizes, namely, it holds that:

lim sup
i→∞

E‖w?k −wk,i‖2 = O(µ), k = 1, . . . , N, (24)

for small enough µ.
Proof. Let w̃k,i = w?k−wk,i. Using (20) and the mean-value theo-
rem [22, pp. 24], [2, Appendix D], we can express ∇̂wkJk(wk,i−1)
as follows:

∇̂wkJk(wk,i−1) = bk −Hk,i−1w̃k,i−1 − sk,i(wk,i−1), (25)

where

bk , ∇wkJk(w?k), (26)

Hk,i−1 ,
∫ 1

0

∇2
wk
Jk(w?k − tw̃k,i−1)dt. (27)

By introducing the following extended vectors and matrices, which
collect quantities from across the network:

W̃i , W
? − col {w1,i, . . . ,wN,i} , (28)

Hi−1 , diag {H1,i−1, . . . ,HN,i−1} , (29)

Bi−1 , A(IM − µHi−1), (30)

si , col {s1,i(w1,i−1), . . . , sN,i(wN,i−1)} , (31)

b , col {b1, . . . , bN} , (32)

we can show that the network weight error vector W̃i in (28)
evolves according to the following dynamics:

W̃i = Bi−1W̃i−1 − µAsi + µAb, (33)

where we used (25) and the fact that W? is the solution of the
constrained problem (1), and thus:

AW? = APUW
? (8)

= PUW
? = W?. (34)

Under conditions (10), (12), (13), and Assumption 4, the matrix A
admits a Jordan decomposition of the form A = VεΛεV−1

ε with:

Vε = [ U VR,ε ] , Λε =

[
IP 0
0 Jε

]
, V−1

ε =

[
U>
V>L,ε

]
,

(35)
where Jε is a Jordan matrix with the eigenvalues λ (which may
be complex but have magnitude less than one) on the diagonal
and ε > 0 on the first lower sub-diagonal. Multiplying both sides
of (33) from the left by V−1

ε and introducing the transformed iterate
Wi = V−1

ε W̃i, we obtain:

Wi = V−1
ε Bi−1VεWi−1 − µV−1

ε Asi + µV−1
ε Ab. (36)

We now partition Wi into Wi = col{Wc,i,Wr,i} where Wc,i =
U>W̃i is a P × 1 vector and Wr,i = V>L,εW̃i is an (M − P )× 1
vector. Then, recursion (36) can be decomposed as:

Wc,i = (IP −D11,i−1)Wc,i−1 −D12,i−1Wr,i−1 − sc,i, (37)
Wr,i = (Jε −D22,i−1)Wr,i−1 −D21,i−1Wc,i−1 − sr,i + br,

(38)

where sc,i , µU>Asi, sr,i , µV>L,εAsi, br , µV>L,εAb, and:

D11,i−1 , µU>Hi−1U , D12,i−1 , µU>Hi−1VR,ε
D21,i−1 , µJεV>L,εHi−1U , D22,i−1 , µJεV>L,εHi−1VR,ε,

and where we used the fact that U>A b (13)
= U> b = 0 since the

constrained problem (1) can be written alternatively as:

minimize
W

N∑
k=1

Jk(wk)

subject to (IM − PU)W = 0,

(39)
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Fig. 1. Inference under smoothness. (Left) Link matrix. (Middle) Graph spectral content of Wo with wom = (v>m ⊗ IL)Wo. (Right)
Performance of algorithm (7) w.r.t. Wo for 4 different choices of the matrix U in (1) with U = U ⊗ IL, and non-cooperative strategy.

with the Lagrangian given by:

L(W; γ) =

N∑
k=1

Jk(wk) + γ>(IM − PU)W, (40)

where γ is the M × 1 vector of Lagrange multipliers. From the
optimality conditions, we obtain the following condition on W?:

b+ (IM − PU)λ = 0. (41)

where b is given by (32). By multiplying both sides of the previous
equation by U> and using (11), we obtain U> b = 0.

Now, using similar arguments as in [2, Theorem 9.1], we can
show that, under Assumptions 2, 3, and 4, the variances of Wc,i

in (37) and Wr,i in (38) are coupled and recursively bounded as:[
E‖Wc,i‖2
E‖Wr,i‖2

]
� Γ

[
E‖Wc,i−1‖2
E‖Wr,i−1‖2

]
+O(µ2), (42)

where
Γ =

[
1−O(µ) O(µ)
O(µ2) ‖Jε‖+O(µ2)

]
, (43)

with ‖Jε‖ < 1. It then follows that, for sufficiently small µ, we
have:

lim sup
i→∞

[
E‖Wc,i‖2
E‖Wr,i‖2

]
�
[
O(µ)
O(µ2)

]
, (44)

from which we can conclude that:

lim sup
i→∞

E‖W̃i‖2 = O(µ). (45)

The proof of (42)–(45) is omitted due to space limitations.

V. SIMULATION RESULTS
We apply strategy (7) to solve distributed inference under

smoothness (described in Remark 2 of Section II). We consider a
connected mean-square-error (MSE) network of N = 50 nodes and
Mk = L = 5, generated randomly with the link matrix shown in
Fig. 1 (left). Each agent is subjected to streaming data {dk(i),uk,i}
assumed to satisfy a linear regression model [2]:

dk(i) = u>k,iw
o
k + vk(i), k = 1, . . . , N, (46)

for some unknown L × 1 vector wok to be estimated with vk(i)
denoting a zero-mean measurement noise. For these networks, the
risk functions take the form of mean-square-error costs:

Jk(wk) =
1

2
E|dk(i)− u>k,iwk|2, k = 1, . . . , N. (47)

The processes {uk,i,vk(i)} are zero-mean jointly wide-sense sta-
tionary with: i) Euk,iu>`,i = Ru,k = σ2

u,kIL if k = ` and zero oth-
erwise; ii) Evk(i)v`(i) = σ2

v,k if k = ` and zero otherwise; and iii)

Table I. Performance of strategy (7) w.r.t. W? in (1) for 4 different
choices of µ.

µ 10−5 10−4 10−3 10−2

MSD? −64.12dB −54.05dB −42.56dB −28.62dB

uk,i and vk(i) are independent of each other. The variances σ2
u,k

and σ2
v,k are generated from the uniform distributions unif(0.5, 2)

and unif(0.1, 0.4), respectively. Let Wo = col{wo1, . . . , woN}.
The signal Wo is generated by smoothing a signal Wo by a
diffusion kernel. Particularly, we generate Wo according to Wo =
[(V e−τΛV >) ⊗ IL]Wo with τ = 4, Wo a randomly generated
vector from the Gaussian distribution N (0.1 × 1NL, INL), and
{V = [v1, . . . , vN ],Λ = diag{λ1, . . . , λN}} are the matrices
of eigenvectors and eigenvalues of Lc = diag{C1N} − C.
The adjacency matrix C is chosen such that the (k, `)-th entry
[C]k` = ck` = 0.1 if ` ∈ Nk and 0 otherwise. Figure 1
(middle) illustrates the normalized squared `2-norm of the spectral
component wm = (v>m⊗IL)Wo. It can be observed that the signal
is mainly localized in [0, 0.6].

We run algorithm (7) for 4 different choices of matrix U in (1)
with U = U⊗IL: i) matrix U chosen as the first eigenvector of the
Laplacian U = [v1] = 1√

N
1N ; ii) matrix U chosen as the first two

eigenvectors of the Laplacian U = [v1 v2]; iii) matrix U chosen
as U = [v1 v2 v3]; iv) matrix U chosen as U = [v1 v2 v3 v4]. In
each case, the combination matrix A is set as the solution of the
optimization problem (19). We set µ = 0.01. We report the network
MSDo learning curves 1

N
E‖Wo−Wi‖2 in Fig. 1 (right). The results

are averaged over 200 Monte-Carlo runs. The learning curve of
the non-cooperative solution, obtained from (7) by setting A =
ILN , is also reported. The results show that the best performance
is obtained when U = [v1 v2 v3]⊗IL. This is due to the fact that the
columns of U constitute a basis spanning the useful signal subspace
(see Fig. 1 (middle)). As a consequence, a strong noise reduction
may be obtained by projecting onto this subspace compared with
the non-cooperative strategy where each agent estimates wok without
any cooperation. By forcing consensus (i.e., by choosing U = [v1]),
the resulting estimatewk,i will be biased with respect to wok, which
is not common across agents. The performance obtained when U =
[v1 v2 v3 v4] is worse than the case where U = [v1 v2 v3] due to
a smaller noise reduction.

Finally, we illustrate Theorem 1 in Table I by reporting the
steady-state MSD? = lim supi→∞

1
N
E‖W? − Wi‖2 when U =

[v1 v2 v3] ⊗ IL for 4 different values of the step-size µ =
{10−2, 10−3, 10−4, 10−5}. A closed form solution for W? in (1)
exists and is given by:

W
? = U(U>HU)−1U>HWo, (48)

where H = diag{Ru,k}Nk=1. We observe that, in the small adap-
tation regime, i.e., when µ → 0, the network MSD? increases
approximately 10dB per decade (when µ goes from µ1 to 10µ1).
This means that the steady-state MSD? is on the order of µ.
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