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ABSTRACT

We propose a new distributed algorithm to solve the total

least-squares (TLS) problem when data are distributed over

a multi-agent network. To develop the proposed algorithm,

named distributed ADMM TLS (DA-TLS), we reformulate

the TLS problem as a parametric semidefinite program and

solve it using the alternating direction method of multipliers

(ADMM). Unlike the existing consensus-based approaches to

distributed TLS estimation, DA-TLS does not require care-

ful tuning of any design parameter. Numerical experiments

demonstrate that the DA-TLS converges to the centralized so-

lution significantly faster than the existing consensus-based

TLS algorithms.

Index Terms— ADMM, consensus, distributed estima-

tion, total least squares, semidefinite programming.

1. INTRODUCTION

With the recent advances in technology, large quantities of

data are collected by numerous sensors, which are often geo-

graphically dispersed. Hence, performing data analysis tasks

such as estimation and classification at a central processing

unit is impractical due to transmission cost or privacy rea-

sons. Furthermore, collecting all the data in a fusion center

creates a single point of failure. Therefore, it is imperative to

develop algorithms that are capable of processing data spread

across multiple agents [1–7].

In the realm of linear estimation, the total least-squares

(TLS) method has been introduced as an alternative to the or-

dinary least-squares method to deal with errors-in-variables

models. In such models, both independent and dependent

variables are corrupted by noise or perturbation. TLS has

been successfully used in several signal processing applica-

tions, e.g., frequency estimation of power systems [8–10],

cognitive spectrum sensing [11], system identification [12],

and wireless sensor networks [13].

The distributed TLS problem has previously been con-

sidered in [13–21]. The works in [13, 14] are based on the

consensus strategy and rely on the dual-based subgradient
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method. Their relatively high computational complexity has

partially motivated the works in [16–20]. While the approach

of [16] is based on the average consensus strategy, the algo-

rithms in [17–21] are based on diffusion strategies and, there-

fore, suffer from relatively slow convergence [6]. The conver-

gence speed of the algorithm proposed in [13] greatly depends

on the network topology and dimensionality of the data. Al-

though these shortcomings are mitigated in [14], the conver-

gence rate of algorithms in [13] and [14] highly depends on

the choice of the step-size, whose optimal tuning requires the

global knowledge of the data and network topology.

In this paper, we solve the distributed TLS problem when

each agent has access to parts of a set of linear equations, i.e.,

a subset of the rows of the observation matrix and the output

vector. This is a common scenario in wireless sensor net-

works, e.g., distributed system identification [22]. Through

a change of variable from a vector to a rank-one matrix and

subsequent semidefinite relaxation (SDR), we transform the

non-convex distributed TLS problem into a semidefinite pro-

gram. We solve the modified problem using the alternating di-

rection method of multipliers (ADMM) and a generalization

of the algorithm proposed in [23] for fractional programming.

Since the optimal solution is rank-one, the relaxation is tight

and does not incur any loss of optimality [24]. In addition, as

the objective function in the modified problem is the sum of

fractions of linear functions, the convergence of the proposed

algorithm to the globally optimal solution is guaranteed.

The proposed algorithm, called distributed ADMM TLS

(DA-TLS), is fully distributed in the sense that it requires the

agents to share data only with their immediate neighbors at

each iteration. Furthermore, the performance of DA-TLS is

not sensitive to the tuning of its parameters. This makes DA-

TLS more flexible and suitable for distributed deployment in

comparison with the algorithms of [13,14]. Simulation results

show faster convergence of DA-TLS to the centralized solu-

tion at all agents in comparison with the existing algorithms.

2. SYSTEM MODEL

We consider a connected network of K ∈ N agents mod-

eled as an undirected graph G(K, E) where the set of vertices

K = {1, . . . ,K} corresponds to the agents and the edge set
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E represents the communication links between the pairs of

agents. Agent k ∈ K can communicate with its neighbors

whose indexes are in the set Nk with cardinality |Nk|. By

convention, Nk does not include the agent k itself.

Let X ∈ R
N×P be the observation matrix, ∆ ∈ R

N×P

the error in the observation matrix, y ∈ R
N×1 the response

vector, δ ∈ R
N×1 the error in the response vector, and w ∈

R
P×1 the sought-after parameter vector that relates X and y

through (X−∆)w = y−δ. The matrix X consists of K sub-

matrices Xk, i.e., X = [XT
1,X

T
2, . . . ,X

T
K ]T, and the vector

y ∈ R
N×1 of K subvectors yk, i.e., y =

[

yT
1 ,y

T
2 , . . . ,y

T
K

]T
,

as the data are distributed among the agents and each agent k
holds its respective Xk ∈ R

Nk×P and yk ∈ R
Nk×1 where

∑K
k=1 Nk = N and (·)T denotes the matrix transpose.

The TLS estimate of the unknown parameter vector w can

be found by solving the constrained optimization problem

min
w,∆,δ

‖∆‖F + ‖δ‖

s.t. (X−∆)w = y − δ
(1)

where ‖·‖F and ‖·‖ denote the Frobenius norm and Euclidean

norm, respectively. When the entries of ∆ and δ are inde-

pendent and identically distributed (i.i.d.), a centralized TLS

solution wc of (1) can be obtained as

wc =
−1

vP+1
[v1, v2, . . . , vP ]

T (2)

where v = [v1, v2, . . . , vP+1]
T is the right singular vector

corresponding to the smallest singular value of [X,y] [25].

An equivalent but more practical solution can be obtained

by minimizing the Rayleigh quotient cost function as [25]

min
w

‖Xw − y‖2

‖w‖2 + 1
or min

w

K
∑

k=1

‖Xkw − yk‖
2

‖w‖2 + 1
. (3)

Since finding a centralized solution of (3) over a network may

be inefficient, we propose a distributed algorithm for this pur-

pose in the following section.

3. DISTRIBUTED TLS

We first discuss the SDR technique that allows us to trans-

form the TLS problem into a parametric semidefinite pro-

gram, which we solve iteratively through two nested loops.

Then, we describe the consensus-based reformulation of the

resultant parametric semidefinite program that enables its dis-

tributed solution via the ADMM, which forms the inner loop.

Finally, we describe the steps of the inner and outer loops of

the algorithm.

3.1. Semidefinite Relaxation

Using the properties of the matrix trace operator, we rewrite

the Rayleigh quotient cost function in (3) as

K
∑

k=1

tr(wwTXT
kXk)− 2yT

kXkw + ‖yk‖
2

tr(wwT) + 1
. (4)

Considering (4) and defining

W =

[

wwT w

wT 1

]

and Ck =

[

XT
kXk −XT

k yk

−yT
k Xk ‖yk‖2

]

, (5)

(3) can be recast as

min
W�0

K
∑

k=1

tr(CkW)

tr(W)

s.t. rank(W) = 1.

(6)

Relaxing the rank constraint in (6) turns it into the following

aggregate linear-fractional program

min
W�0

K
∑

k=1

tr(CkW)

tr(W)
. (7)

Both numerator and denominator of the summands in the ob-

jective function of (7) are linear functions of the matrix vari-

able W. Therefore, (7) can be converted to a parametric

semidefinite program whose objective is in the subtractive

form as per the following proposition.

Proposition 1. Let W∗ denote the optimal solution to (7).

Then, there exists a vector β∗ = [β∗
1 , . . . , β

∗
K ] such that W∗

is also the optimal solution of the following semidefinite pro-

gram

W∗ = arg min
W�0

K
∑

k=1

tr(CkW)− β∗
k tr(W). (8)

In addition, W∗ also satisfies the following system of equa-

tions:

tr(CkW
∗)− β∗

k tr(W∗) = 0, k = 1, 2, . . . ,K. (9)

Proof. The Karush-Kuhn-Tucker (KKT) conditions of opti-

mality [26] for problem (8) give the same solution set as the

KKT conditions for the epigraph form of (7). Since the KKT

conditions for both problems are sufficient for optimality, the

two problems are equivalent. The system of equation (9) is

due to the KKT conditions.

In the next subsection, we describe a consensus-based

reformulation of (8), which allows the application of the

ADMM to solve (8) for any given β∗.
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3.2. Building Consensus

In order to tackle (8) in a distributed fashion, we introduce

W := {Wk}
K
k=1 representing the local copies of W at the

agents. Therefore, we rewrite (8) in the following equivalent

form

min
{Wk�0}

K
∑

k=1

tr(CkWk)− β∗
k tr(Wk)

s.t. Wk = Wl, l ∈ Nk, k ∈ K.

(10)

The equality constraints enforce consensus over Wk, k =
1, . . . ,K, across each agent’s neighborhood Nk.

To solve (10) in a distributed fashion, we employ the

ADMM [1]. Hence, we introduce the auxiliary local vari-

ables Z := {Zl
k}l∈Nk

and rewrite (10) as

min
{Wk�0}

K
∑

k=1

tr(CkWk)− β∗
k tr(Wk)

s.t. Wk = Zl
k,Wl = Zl

k, l ∈ Nk, k ∈ K.

(11)

Using the auxiliary variables Z , we obtain an equivalent

alternative representation of the constraints in (10). These

variables are only used to derive the local recursions and are

eventually eliminated. By associating the Lagrange multipli-

ers V := {{Γl
k}l∈Nk

, {Λl
k}l∈Nk

}Kk=1 with the constraints in

(11), we get the following augmented Lagrangian function:

Lρ(W,Z,V) =
K
∑

k=1

tr (CkWk)− β∗
k tr(Wk)

+
K
∑

k=1

∑

l∈Nk

tr

(

(

Λl
k

)T (

Wk − Zl
k

)

+
(

Γl
k

)T (

Wl − Zl
k

)

)

+
ρ

2

K
∑

k=1

∑

l∈Nk

(

∥

∥Wk − Zl
k

∥

∥

2

F
+
∥

∥Wl − Zl
k

∥

∥

2

F

)

, (12)

where the constant ρ > 0 is a penalty parameter.

Obtaining the solution through the ADMM entails an it-

erative process consisting of the following steps at each iter-

ation: 1) Lρ is minimized with respect to W; 2) Lρ is mini-

mized with respect to Z; and, 3) the Lagrange multipliers V
are updated through gradient-ascent [1].

Thanks to the reformulation of (8) as (11), the Lagrangian

function (12) can be decoupled with respect to variables in W
and Z as well as across the network agents K. It can be shown

that, in the ADMM steps, the auxiliary variables Z and the

Lagrange multipliers {Γl
k}l∈Nk

are eliminated. Hence, we

end up with the following iterative updates at the kth agent

Wk(m+ 1) = arg min
Wk�0

Lρ(Wk,Λk(m)) (13)

Λk(m+ 1) = Λk(m)+ρ
∑

l∈Nk

[Wk(m+ 1)−Wl(m+ 1)],

(14)

where Λk(m) = 2
∑

l∈Nk
Λl

k(m) and m is the iteration in-

dex.

The constrained minimization problem in (13) can be ex-

pressed as the following semidefinite least-squares problem

min
Wk�0

tr[WT
k(Wk − 2Gk(m))], (15)

where

Gk(m) =
1

2ρ|Nk|

(

ρ|Nk|Wk(m) + ρ
∑

l∈Nk

Wl(m)

−Ck + βkI−Λk(m)
)

. (16)

The solution of (15) is given by

Wk(m+ 1) = U(m)max (Σ(m),0)U(m)T, (17)

where U(m) and Σ(m) are the orthogonal and diagonal ma-

trices coming from the eigen-decomposition (EVD) G(m) =
U(m)Σ(m)UT(m) and max(Σ(m),0) denotes the diagonal

matrix whose entries are the maxima of the diagonal entries

of Σ(m), i.e., the eigenvalues of Gk(m), and zero. Note that

the most computationally intensive operation is the EVD.

3.3. Algorithm

The DA-TLS algorithm consists of two loops. In the inner

loop, the solution of (8) is obtained using the ADMM for

a given β∗. In the outer loop, we use a single iteration of

the Newton’s method [27] to find the solution of (9), i.e.,

βk(j + 1) = βk(j) − [tr(W)]−1[βk(j)tr(W) − tr(CkW)].
The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 DA-TLS

All agents k ∈ K initialize βk(1) = tr(Ck)/(p + 1) and

locally run

for j = 1, 2, . . . do

Initialize Wk(0) = 0 and Λk(0) = 0

for m = 1, 2, . . . do

Receive Wk(m) from neighbors in Nk

Update Λk(m+ 1) as in (14)

Compute Gk(m) as in (16)

Compute EVD of Gk(m) = U(m)Σ(m)UT(m)
Update Wk(m+1) = U(m)max (Σ(m),0)UT(m)

end for

Update βk(j + 1) = tr(CkWk(m+1))
tr(Wk(m+1))

end for

After estimating Wk, the vector estimate wk is found as

follows. Let W̆k = Wk/ωk where ωk is the (P +1), (P +1)
entry of Wk. Then, wk is the eigenvector corresponding to

the smallest eigenvalue of the P × P upper-left submatrix of

W̆k.

Using the results in [24, 28], it can be observed that the

solution of (7) and consequently (8) is rank-one. Hence, op-

timizing with respect to the matrix variable W and relax-

ing the rank constraint do not lead to any loss of optimal-

ity [24]. Therefore, the solutions to (3) and (10) coincide.
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Convergence of the proposed DA-TLS algorithm to the global

centralized solution can be proven by checking that both in-

ner and outer loops converge. The convergence of the inner

loop can be verified following [29, Proposition 3], i.e., for all

k ∈ K, the iterates {Wk(m)}, {Λk(m)} produced by (13)

and (14) are convergent and Wk(m) → W∗ as m → ∞.

Moreover, the convergence of the outer loop follows setting

C̄ =
∑K

k=1 Ck and β̄∗ =
∑K

k=1 β
∗
k and observing that the

optimization in (8) is equivalent to

min
W�0

tr(C̄W)− β̄∗
tr(W). (18)

Since the objective function in (18) is linear, (18) is a stan-

dard semidefinite program with a unique solution. Therefore,

DA-TLS naturally inherits the theoretical properties of the al-

gorithm proposed in [23] for fractional programming whose

convergence is guaranteed.

4. SIMULATIONS

The simulated network is connected with a random topology

and consists of K = 20 agents where each agent is linked to

three other agents on average. We average results over 100

independent trials. In each trial, the scenario is generated

according to the same procedure as described in the simu-

lation sections of [13, 14]. For each agent k ∈ K, we cre-

ate a 2P × P local observation matrix Xk whose entries are

drawn from a standard normal distribution. The entries of

the parameter vector w are also drawn from a standard nor-

mal distribution. The entries of the error matrix ∆ and error

vector δ are i.i.d. zero-mean Gaussian with variance 0.25.

To evaluate the performance of the proposed algorithm, we

use the normalized error between the centralized TLS solu-

tion wc as per (2) and the local estimates that is defined as
∑K

k=1 ‖wk −wc‖2/‖wc‖2 where wk denotes the local esti-

mate at agent k. In Figs. 1-2, we plot the normalized error

versus the total number of iterations, which is given by the

product between the number of iterations of the inner and the

outer loop. The former is set to 80 for Fig. 1 and 40 for Fig.

2, while the latter is set to 5 for both the plots.

Fig. 1 shows that, for P = 9, DA-TLS with ρ = 2
and ρ = 3 converges significantly faster than the existing ap-

proaches, i.e., the distributed TLS (D-TLS) algorithm of [13]

and the inverse-power-iteration-based distributed TLS (IPI-

D-TLS) algorithm of [14]. Fig. 2 shows the superiority of

DA-TLS with ρ = 1 over IPI-D-TLS with µ = 1 for two

different values of P . Although not further substantiated here

due to the space constraints, we have observed that DA-TLS

consistently outperforms its contenders in various scenarios.

5. CONCLUSION

In this paper, we developed a new distributed algorithm for

solving the TLS problem. We recast the original optimization

problem into an equivalent linear-fractional program. Then,

0 100 200 300 400

# iterations

10
-4

10
-3

10
-2

10
-1

Fig. 1. Normalized error of the DA-TLS, D-TLS, and IPI-D-

TLS algorithms with two values of penalty parameter (ρ = 2
and ρ = 3) for DA-TLS and two values of the step-size (µ =
0.2 and µ = 0.3) for IPI-D-TLS.

0 50 100 150 200

# iterations

10
-2

10
-1

Fig. 2. Normalized error for different values of P . For DA-

TLS, we set ρ = 1 and, for IPI-D-TLS, we set µ = 1.

employing semidefinite relaxation, we transformed the resul-

tant problem into a parametric semidefinite program whose

structure is suitable for distributed treatment via ADMM.

Simulation results showed that the proposed algorithm con-

verges faster than the existing alternative algorithms while

being less sensitive to tuning of the parameters involved in

the algorithm.
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quency of three-phase power systems via widely-linear mod-

eling and total least-squares,” in Proc. 5th IEEE International

Workshop on Computational Advances in Multi-Sensor Adap-

tive Processing, Dec 2013, pp. 464–467.

[11] E. Dall’Anese and G. B. Giannakis, “Distributed cognitive

spectrum sensing via group sparse total least-squares,” in Proc.

4th IEEE International Workshop on Computational Advances

in Multi-Sensor Adaptive Processing, Dec 2011, pp. 341–344.

[12] I. Markovsky, J. Willems, S. Van Huffel, Bart De Moor, and

R. Pintelon, “Application of structured total least squares for

system identification and model reduction,” IEEE Transactions

on Automatic Control, vol. 50, no. 10, pp. 1490–1500, Oct

2005.

[13] A. Bertrand and M. Moonen, “Consensus-based distributed

total least squares estimation in ad hoc wireless sensor net-

works,” IEEE Transactions on Signal Processing, vol. 59,

no. 5, pp. 2320–2330, May 2011.

[14] ——, “Low-complexity distributed total least squares estima-

tion in ad hoc sensor networks,” IEEE Transactions on Signal

Processing, vol. 60, no. 8, pp. 4321–4333, Aug 2012.

[15] S. Huang and C. Li, “Distributed sparse total least-squares over

networks,” IEEE Trans. Signal Process., vol. 63, no. 11, pp.

2986–2998, Jun 2015.
[16] R. Lopez-Valcarce, S. S. Pereira, and A. Pages-Zamora, “Dis-

tributed Total Least Squares estimation over networks,” in

Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing, May 2014, pp. 7580–7584.

[17] R. Arablouei, S. Werner, and K. Doğançay, “Diffusion-based
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