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ABSTRACT

Recent methods for tracking multiple objects have addressed
important issues such as time-varying cardinality, unordered
sets of measurements, and object labeling. Another challenge
is how to robustly associate objects on a new scene with pre-
viously estimated objects. We propose a new method to track
a dynamically varying number of objects using information
from previously tracked ones. Our method is based on non-
parametric Bayesian modeling using diffusion processes and
random trees. We use simulations to demonstrate the perfor-
mance of the proposed algorithm and compare it to a labeled
multi-Bernoulli filter based tracker.

Index Terms— Multiple object tracking, random tree,
Dirichlet diffusion tree, nonparametric Bayesian modeling,
sequential Monte Carlo method

1. INTRODUCTION

The multiple object tracking problem could include esti-
mating the objects’ time-varying cardinality, label and state
parameters, among other information, depending on the ap-
plication [1–8]. Among various approaches, random finite
set methods were used to solve this problem, together with
probability hypothesis density filtering and multi-Bernoulli
or labeled multi-Bernoulli filtering [1, 3–5]. Nonparametric
Bayesian methods were recently used for modeling evolving
object state priors. In [9], the hierarchical Dirichlet pro-
cess was used as a prior on the number of unobserved input
modes to track manoeuvring objects. We recently used the
dependent Dirichlet process to model the object prior and
adaptively estimate both the object label and cardinality at
each time step [10].

The Dirichlet diffusion trees (DDT), and its Pitman-Yor
diffusion tree generalization, nonparametric Bayesian pri-
ors over tree structures, are thus useful for estimating latent
parameters with hierarchical structure [11–13]. They were
used, for example, in [14], as structure priors to infer dif-
ferent possible scenarios based on trees of different depth
and path lengths. It was demonstrated in [15] that the high

†This work was supported in part by Grant AFOSR FA9550-17-1-0100.

computational cost of Markov chain Monte Carlo (MCMC)
inference can be avoided using efficient approximate infer-
ence DDT models. In this paper, we propose a dependent
Poisson diffusion tree (D-PoDT) that extends the capability
of DDTs to model hierarchies to also capture dependencies
among the object states for the multiple object tracking prob-
lem. The dependent Poisson diffusion process (D-PoDP)
introduces a prior on the space of the object state parameters
using an infinite random tree. It is used as a state prior to
capture the time-dependency among the states and estimate
the state parameters. A time-dependent process is introduced
to infer from the measurements and update the object state
parameters, label the objects and and estimate the object
cardinality at each time step. An MCMC sampling method
integrates the distribution over the infinite random tree and
the time-dependent process for updating the states.

The rest of the paper is organized as follows. Section 2 de-
scribes the time-varying multiple object tracking model. Sec-
tion 3 provides detailed information on our proposed multiple
object tracking algorithm. In Section 4, the performance of
the algorithm is demonstrated using a simulated example with
five objects with time-dependent trajectories.

2. TRACKING MODEL

We consider a multiple object tracking model with time-
varying numbers of objects entering, leaving or remaining
in the scene at each time step k. The object cardinality
Nk and the number of measurements Lk are both assumed
unknown [5, 10]. This tracking model is used to jointly
estimate the object state information and the cardinality at
each time step. We assume that the sample spaces of the
`th object state vector x`,k, `= 1, . . . , Nk and lth measure-
ment vector zl,k, l = 1, . . . , Lk, at time step k, are X⊆Rnx
and Z⊆Rnz , respectively. We also assume that the sequence
Xk = {xk,1, . . . ,xk,Nk} corresponds to the configuration of
the multiple object state vectors at time step k.

Given the state vector configuration at time (k − 1), we
consider three possible scenarios for the `th object and its
state vector at time step k: (a) the object leaves the scene
with probability (1 − P`,k|k−1); (b) the object remains in the
scene with probability P`,k|k−1 and its state x`,k−1 transitions
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with probability Pθ(xk|xk−1) and unknown parameter vector
θ; and (c) a new object, with state x`,k∈Xk, enters the scene
generating a measurement. We also assume that each mea-
surement is generated by only one object and that measure-
ments are independent of one another.

3. DEPENDENT DIFFUSION MODELING

We propose a new method for multiple object tracking based
on a D-PoDP. These are similar to the Dirichlet diffusion trees
in [11] and Pitman-Yor diffusion trees in [12] in that they can
be used as priors to latent parameters to capture hierarchical
structure. The D-PoDTs are different, however, in that the
prior can directly incorporate time-dependent learned infor-
mation. For multiple object tracking, the state prior can in-
clude the number of objects at the current time and the object
label at the previous time. Thus, the proposed method can be
used to make inference on the object labels over related in-
formation by tracing random tree paths. Following details the
proposed D-PoDP algorithm.

3.1. Poisson Diffusion Process

We consider a class of priors on trees whose terminal nodes
(leaves) are the object state parameters, and whose non-
terminal nodes (branch nodes) represent clustering of the
state parameters in a hierarchy. We assume that a tree may
have infinite number of vertices, and every edge can occur
with some probability. The probability of an edge occurring
that violates the tree conditions is assumed zero. We assume
that the first vertex (at time step k = 0) is drawn from Pθ0

with probability 1. To generate this infinite random tree, the
branch nodes and leaves must be specified. We describe the
generative process in terms of a diffusion process on a unit
interval; that is, the leaves correspond to the location of the
diffusion process at time step k = 1. Each point starts at time
k = 0 and follows a diffusion process, i.e., a Brownian mo-
tion, until time k = 1, where it is observed. For example, we
assume that the first object state at time step k = 1, θ1,1, is
drawn from a diffusion process and fixed. The second object
state, θ1,2, starts at time k = 0 and follows the same path as
θ1,1 up to time δt (time between steps) before it diverges
from the first path and takes an independent path. The gener-
ative process for the ith object parameter at time step k = 1 is
as follows. At a branch point, if θ1,i does not diverge off the
branch before reaching to the previous divergence point, then
the previous branches are selected with probability

P(select jth path) =
nj − β
m+ η

, P(diverge) =
η − βK
m+ η

. (1)

Here, nj is the number of objects previously in the jth branch,
K is the total number of branches originating from this branch
point, m=

∑K
l=1 nl, and β and η are discount and concentra-

tion hyperparameters. It was shown in [12] that, since the spe-
cific diffusion path taken between nodes can be ignored, the

probability of generating a specific tree structure with associ-
ated divergence times can be determined by the accumulative
divergence function H(·); this can analytically determine the
locations at each leaf node. Therefore, θ1,i follows the path of
the previous points and diverges in the interval δt, assuming
it has not diverged up to time t ∈ [0, 1], with probability

Γ(m− β)

Γ(m+ 1− η)

∫
δt

dH(s) .

Here, Γ is the gamma function,m is the number of points that
have previously traversed this path, and β and η are discount
and concentration hyperparameters, respectively. For large
m, the probability of diverging from this path is small. As
a result, an infinite random tree can be generated from which
there is a probability measure on each vertex that is dependent
on its parent vertex. Note that the random tree generated is
exchangeable [12]. Therefore, the probability of generating
a specific tree, divergence times, and divergence locations is
invariant to the ordering of the object state parameters.

The proposed algorithm is initialized by drawingN1 from
a Poisson distribution, N1∼Po(α) for some α. Subsequently,
we select N1 state parameters (leaves), which, without loss
of generality, can be assumed to be the first N1 leaves due
to exchangeability. We then set {θ1,1, . . . ,θ1,N1} to be the
first N1 parameters generated through this process that are
associated with the state configuration {x1,1, . . . ,x1,N1

}.

3.2. Transition from Time k−1 to Time k

We define Vk−1 and VB,k−1 to be the set of generated state
parameters (leaves) nodes and branch nodes, respectively, that
are connected to the state parameter (leaf) node at time k−1.
Each point θ`,k−1∈Vk−1 that is generated in the tree has two
options: (i) it can remain in the tree with probability P`,k|k−1
and transition to θ`,k according to the transition kernel prob-
ability ν(θ`,k−1,θ`,k), which is proportional to the transition
probability Pθ(xk|xk−1); (ii) it can leave the tree with proba-
bility (1−P`,k|k−1). We assume that the following parameters
are available at time k−1:

• Nk−1, number of objects
• Vk−1 = {θk−1,1, . . . ,θk−1,Nk−1

}, generated parameters
• VB,k−1, branch nodes connected to a leaf node
• Vk|k−1 ⊆ Vk−1, survived parameters
• VB,k|k−1 ⊆ VB,k−1, survived branch nodes
• Sa,k−1, siblings with common parent branch node a
• Sa,k|k−1⊆Sa,k−1, survived siblings with common par-

ent branch node a

Note that if all the leaves connected to a branch node dis-
appear, the branch node is removed from the set of branch
nodes. A probability vector pbranch = [pa]a∈VB,k|k−1∪δ is then
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assigned to the survived branch nodes as

pa =


|Sa,k−1|+|Sa,k|k−1|−γ

NB,k|k−1−1+
∑
a∈VB,k|k−1

|Va,k−1|+ζ , a ∈ VB,k|k−1
ζ−|VB,k|k−1|γ

NB,k|k−1−1+
∑
a∈VB,k|k−1

|Va,k−1|+ζ , a = δ

where |Sa,k−1| is the cardinality of the set Sa,k−1, NB,k|k−1
is the number of points that survives after transition, δ de-
notes a new branch, Pδ is the probability of generating a new
branch, and ζ and γ are hyperparameters.

3.3. Evolution and Parameter Estimation at Time k

At time k, we utilize the distribution on set Vk|k−1 to find
Vk. To this end, we can assume that θi,k|k−1 ∈ Sa,k|k−1,
i= 1, . . . , |Vk|k−1| are transitioned from time k−1 to k. We
draw Ñi,k|k−1∼Po( pa×α

2 |Sa,k|k−1|
) and draw Ñi,k|k−1 points

given θi,k|k−1 based on a diffusion process described in Sec-
tion 3.1. At time k, we also draw Ñδ,k|k−1 ∼ Po(pδ×α2 ) and
draw Ñδ,k|k−1 new points from the infinite random graph
from Pθ0 . We set Ñk = ΣiÑi,k|k−1 and Ṽk = {θ1, . . . θÑk}.
The overall algorithm is summarized in Algorithm 1.

Algorithm 1 D-PoDP-EMM algorithm

Initialization:
• Draw θ0

0 ∼ Pθ0

• Draw N1 ∼ Po(α)
• Generate {θ1,1, . . . ,θ1,N1

} based on a diffusion process
with branching probability of convergence in (1)

Transitioning from time k−1 to k
for θi,k|k−1 ∈ Vk|k−1 do

Draw Ñi,k|k−1 ∼ Po( pa×α
2 |Sa,k|k−1|

)

Generate Ñi,k|k−1 parameter points given θi,k|k−1 using
a diffusion process

end for
• Draw Ñδ,k|k−1 ∼ Po(pδ×α2 )

• Draw Ñδ,k|k−1 new parameter points from the base dis-
tribution Pθ0 following a diffusion process

At time k
Set Ñk =

∑
i Ñi,k|k−1

Set Ṽk = {θk,1, . . . ,θk,Ñk}.
Set Xk = {xk,1, . . .xk,Ñk}.

3.4. Inference through a Dependent Mixture Model

The D-PoDP in Algorithm 1 provides a joint estimation of the
object state parameters and number of objects, at time step k.
At time k, the measurement vector, zl,k, l = 1, . . . , Lk, be-
comes available to update the time-dependent cardinality and

infer the posterior distribution. Note that the probability of se-
lecting some of the generated parameters may be zero; also,
some new parameters may also need to be generated. We
introduce an algorithm to dependently cluster these measure-
ments as follows.

We use the state parameter vector distribution from the
output of Algorithm 1 as the mixing distribution to infer mea-
surement distributions to update the object cardinality. The
probability of choosing a parameter θi,k is proportional to the
popularity of the parameter at time k, in addition to the car-
dinality of the set of siblings with the common parent branch
node at time k−1. Specifically, if we assume that θ`,k is tran-
sitioned from θ`,k−1 (for which it shares the common parent
a), then π` = P(select θ`,k) ∝ (n`,k+ |Sa,k−1|), where n`,k is
the number of measurements that have already selected θ`,k
at time k. The probability of selecting a parameter that has not
been used up to time k is proportional to some hyperparame-
ter λ. In particular, p(zl,k | x`,k,θ`,k, π`) can be inferred as

π` ∝

n`,k + |Sa,k−1|, θ`,k−1 ∈ Sa,k−1, θ`,k ∈ Ṽk

λ, New θ`,k
(2)

x`,k | θ`,k ∼ G(θ`,k) (3)

z`,k | x`,k,θ`,k, π` ∼ F (x`,k,θ`,k) (4)

where G and F are two appropriately selected distributions.
Algorithm 2 summarizes the implementation of the dependent
mixtures to cluster the measurements and track the objects.
Note that since the D-PoDP is used to find the object trajecto-
ries, one needs to trace the random tree. Algorithms 1 and 2,
together with MCMC sampling methods, constitute the pro-
posed D-PoDP multiple object tracking algorithm. Sampling
in both algorithms is performed using MCMC methods; in
particular, we use Gibbs sampling for models based on con-
jugate prior distributions.

Algorithm 2 Dependent mixture model to cluster
measurements and track objects

Input: Measurements: {z1,k, . . . , zk,Lk}
Output: Nk, cluster configurations, and posterior
At time k
Sample {θ1,k, . . . ,θk,Ñk} and {xk,1, . . . ,xk,Ñk}
according to Algorithm 1
Draw {πi} according to (2)
for l = 1 to Lk do

Sample zl,k|x`,k,θ`,k, π` using (4)
end for
Nk ← Ñk
Vk = {θ1,k, . . . ,θNk,k}
return Nk and posterior of zl,k|x`,k,θ`,k, π`

4. SIMULATION RESULTS

In order to demonstrate the performance of our proposed D-
PoPD method, we simulated a dynamic nonlinear tracking ex-
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Fig. 1: True and estimated (a) x- and (b) y-coordinates as a
function of the time step k of five objects.

ample using five objects that enter and leave a scene at differ-
ent times. The overall observed time is K = 100 times steps
and the signal-to-noise ratio (SNR) was -3 dB. Th time steps
over which each object is present in the scene are summa-
rized in Table 1. The time steps are also depicted in Figures
1(a) and (b) that show that x and y-coordinates of the true
trajectory of each object. The D-PoPD estimated x and y-
coordinates of the trajectory of each object are also shown
in Figures 1(a) and (b). The D-PoPD algorithm was com-

Table 1: Time step at which object enters and leaves the scene

Object Time Enters Time Leaves

Object 1 k = 0 k = 100

Object 2 k = 10 k = 100

Object 3 k = 10 k = 100

Object 4 k = 10 k = 60

Object 5 k = 20 k = 80

pared with the labeled multi-Bernouli (LMB) based tracker;
both algorithms used 10,000 Monte Carlo (MC) simulations.
As shown in Figures 2a and 2b, the proposed tracker is more
accurate in estimating the time-dependent object cardinality
than the LMB. This is also demonstrated using the optimal
sub-pattern assignment (OSPA) metric (of order p = 1 and
cut-off c = 100) for range an cardinality in Figures 3(a) and
3(b), respectively. As it can be seen for the D-PoPD, for ex-
ample, for the cardinality OSPA measure, the highest error
is observed at time step k = 0, when the first object enters the
scene and then at time step k = 10, when three new objects en-
ter the scene. The method performs very well for a long time,
tracking all four objects in the scene, with only a small error
that soon decreases object 5 enters the scene. It continues to
track the correct number of objects even when object 4 leaves
the scene.
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Fig. 2: Comparison of estimated cardinality using (a) pro-
posed D-PoDP method and (b) LMB when tracking 5 objects.
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Fig. 3: OSPA of order p= 1 and cut-off c= 100 for (a) range
and (b) cardinality averaged over 10,000 MC simulations for
the proposed D-PoPD and the labeled multi-Bernouli (LMB)
based tracker.

5. CONCLUSION

In this paper, we presented a novel class of random trees to
address the multiple object tracking problem by using a dif-
fusion process and random trees where tracing the tree allows
for tracking object trajectories. We demonstrated that the
proposed dependent Poisson diffusion process with Bayesian
nonparametrics modeling and multiple object tracking can ef-
ficiently obtain object tracks, labels and time-varying cardi-
nality. Moreover, the sequential Monte Carlo implementation
of the proposed tracking framework verifies the accuracy and
simplicity of this algorithm.
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[8] R. Kümmerle, M. Ruhnke, B. Steder, C. Stachniss, and
W. Burgard, “Autonomous robot navigation in highly
populated pedestrian zones,” Journal of Field Robotics,
vol. 32, pp. 565–589, 2015.

[9] E. B. Fox, E. B. Sudderth, and A. S. Willsky, “Hierar-
chical Dirichlet processes for tracking maneuvering tar-
gets,” in International Conference on Information Fu-
sion, 2007, pp. 1–8.

[10] B. Moraffah and A. Papandreou-Suppopola, “Depen-
dent Dirichlet process modeling and identity learning
for multiple object tracking,” in Asilomar Conference
on Signals, Systems, and Computers, 2018.

[11] R. M. Neal, “Density modeling and clustering using
Dirichlet diffusion trees,” in Bayesian Statistics 7, J. M.
Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, et al.,
Eds., pp. 619–629. Oxford University Press, 2003.

[12] D. A. Knowles and Z. Ghahramani, “Pitman-Yor dif-
fusion trees,” in Conference in Uncertainty in Artificial
Intelligence, 2011, pp. 410–418.

[13] Z. Ghahramani, “Bayesian non-parametrics and the
probabilistic approach to modelling,” Philosophical
Transactions of the Royal Society, p. 20 pgs, 2013.

[14] E. W. Meeds, D. A. Ross, R. S. Zemel, and S. T.
Roweis, “Learning stick-figure models using nonpara-
metric Bayesian priors over trees,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2008, pp.
1–8.

[15] D. A. Knowles, J. V. Gael, and Z. Ghahramani, “Mes-
sage passing algorithms for Dirichlet diffusion trees,” in
International Conference on Machine Learning, 2011.

5221


		2019-03-18T11:00:18-0500
	Preflight Ticket Signature




