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ABSTRACT

In this paper we present Bayesian methods for tracking scenarios in
which an intrinsic coordinate model is considered and inertial mea-
surements plus occasional position fixes are available. The methods
are first tested using synthetic data, giving a comprehensive evalu-
ation as to their performance. Further evaluation on real data also
reveals our approaches can be favourable alternatives to existing in-
ertial tracking/navigation models.

Index Terms— Bayesian tracking, sequential Monte Carlo, in-
ertial measurements, sensor fusion

1. INTRODUCTION

Research in target tracking has been active over many decades. The
ultimate goal of this topic is to estimate kinematic states as accu-
rately as possible given noisy and limited measurements obtained
from different sources. As surveyed in [1], even though there have
been many successful tracking approaches that are based on white-
noise driven models, there are many mathematical models which are
still underdeveloped. Among them, the intrinsic coordinate model
(sometimes referred to as a curvilinear model, see [2]) has been
shown to work very well in the cases of tracking manoeuvring ob-
jects [3, 4, 5]. Since the dynamics of an object can be expressed
according to its intrinsic body frame, this model offers a promising
solution to address the problem of fusing measurements from inertial
sensors, which are necessarily in the object’s body frame.

Closely coupled with the choice of a good model for target dy-
namics, inference algorithms are of particular importance when de-
veloping successful tracking applications. Among these, Sequential
Monte Carlo (SMC) approaches [6, 7] using Importance Sampling
(IS) have proved to be a powerful methodology when dealing with
non-linear and non-Gaussian problems. On the other hand, Sequen-
tial Markov Chain Monte Carlo (SMCMC), as seen in [8, 9, 10, 11],
is becoming known as a strong competitor for the IS-based methods
in challenging scenarios. In contrast to IS-based SMC methods that
can perform poorly in high dimensions, SMCMC has shown stronger
potential [12, 13]. Also, the properties of SMCMC methods can be
desirable when developing algorithms for sequential batch inference,
as shown in this paper.

Here we present intrinsic model based sequential batch infer-
ence methods, aiming at providing effective alternative solutions for
tracking problems with inertial sensors. The methods are direct
developments of the algorithm introduced in [5]. Specifically, we
present novel state space models capable of incorporating accelera-
tion (for the first time), speed, gyroscope and intermittent Cartesian
position measurements and show how to deal with multiple flows
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of asynchronous measurements. A relevant work can be found in
[14] where a multi-rate particle filter is proposed to deal with un-
synchronised sensor measurements, though here we treat the state
process in continuous time to solve the asynchronicity, as in [5].
Efficient section-wise forward-filtering-backward-sampling (FFBS)
based kernels are designed and implemented by IS-based SMC fil-
ters and SMCMC (for the first time). In addition, to improve the
efficacy of the generic SMCMC a parallel SMCMC algorithm is pro-
posed. Finally, results with real vehicle data show the strong poten-
tial of the SMCMC methods.

2. DYNAMIC AND MEASUREMENT MODELS

The intrinsic coordinate based dynamic model, as in [4, 5], is a con-
tinuous time model, defined by

aP =
TP
m

= sψ̇, (1)

aT = ṡ = − λ
m
s+

TT
m
, (2)

with the tangential acceleration aT , the perpendicular acceleration
aP , the weight of a point massm, the speed s, the heading rate ψ̇ and
a damping factor λ. By assuming that the forces (TT and TP ) are
piecewise constant between consecutive timestamps, the following
equation can be obtained:

st = e
−∆τλ
m st−1 +

TT
λ

(1− e
−∆τλ
m ), (3)

where ∆τ is time between t and t− 1 (this may in practice be vari-
able for some sensor types). From Eqns. (1) - (3) it is clear that
once st, st−1 and ψ̇t are given, TT (st, st−1) is deterministic, so is
TP (ψ̇t, st). We also propose to use a state variable αt = [ψ̇t, bt]

T

in which bt is a gyroscope bias term that is modelled as a Wiener
random process. Provided that we have Gaussian densities for TT ∼
N (µT , σ

2
T ) and TP ∼ N (0, σ2

P ), the state transition densities for s
and α are given by

p(st+1|st) = N
(
st+1|e−

∆τλ
m st +

µT
λ

(1− e−
∆τλ
m ),

σ2
T

λ2
(1− e−

∆τλ
m )2

)
, (4)

p(αt+1|αt, st+1) = N
(
αt+1|Aαt, C

)
. (5)

with A =

[
0 0
0 1

]
and C = diag([

σ2
P

m2s2t+1
, σ2
b∆τ ]). Furthermore,

in terms of Eqns. (1) - (3) the accelerations can be obtained as aP,t =

stψ̇t and aT,t = c(st − st−1) where c = λ(e−
∆τλ
m )/m(1 −

e−
∆τλ
m ). One of the reasons of choosing an intrinsic frame dynamic
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model is that the body frames of inertial sensors (e.g. accelerom-
eters, gyroscopes and speedometers) are aligned with the object’s
intrinsic coordinate (body) frame. This results in linear models for
the kinematic states in the body frame connecting the dynamics to
the inertial measurements, which later allows us to propose states
effectively using Kalman filtering-based methods.

Given that the inertial sensors are fixed in the intrinsic frame of
an object, which is a practical scenario for ground vehicles, we can
now extend the models in [5] and construct the following measure-
ment models for accelerometer, speedometer and gyroscope mea-
surements:

Yα,t =

[
ˆ̇
ψt
âP,t

]
=

[
1 1
st 0

]
αt + vα,t, (6)

vα,t ∼ N (0,Σα), Σα = diag([σ2
ˆ̇
ψ
, σ2
âP ]),

Ys,t =

[
âT,t
ŝt

]
=

[
c −c
1 0

] [
st
st−1

]
+ vs,t, (7)

vs,t ∼ N (0,Σs), Σs = diag([σ2
âT , σ

2
ŝ ]).

Here ˆ̇
ψ is the measurement of angular velocity around the z-axis of

a gyroscope while ŝ is the speedometer measurement in the forward
direction. As for accelerations, we use âT and âP to represent mea-
surements on the x-axis (forward) and the y-axis (leftward) of an
accelerometer. In addition to inertial measurements, the model for
intermittent position information is given by

f(ẑt|zt) = N (ẑt|zt,Σz), Σz = diag([σ2
x, σ

2
y]), (8)

where the position zt = [xt, yt]
T in Cartesian coordinates is calcu-

lated based on speeds and heading rates up to time t, as in [5].

3. INFERENCE ALGORITHMS

3.1. Sequential Importance Resampling (SIR)

Since the introduction in [15], SIR, also known as particle filter-
ing, has become a useful approach to solving intractable inference
problems, in contrast to linear Kalman methods. To use SIR in this
setting first factorise the posterior distribution as follows, with batch
size k ≥ 1 defined as the section length between two consecutive
position measurements,

π(s0:t,α0:t|Yα,0:t, Ys,0:t, ẑ0:t)
∝ p(s0:t,α0:t|Yα,0:t, Ys,0:t, ẑ0:t−k)p(ẑt|α0:t, s0:t)

∝ p(s0:t−k,α0:t−k|Yα,0:t−k, Ys,0:t−k, ẑ0:t−k)

× p(st−k+1:t|Ys,t−k+1:t, st−k)p(Ys,t−k+1:t|st−k)

× p(αt−k+1:t|Yα,t−k+1:t, st−k+1:t,αt−k)

× p(Yα,t−k+1:t|st−k+1:t,αt−k)p(ẑt|α0:t, s0:t). (9)

The dependency on states at time t − k is a direct result from
the Markovian assumption. Suppose now that drawing samples
from importance distributions p(st−k+1:t|Ys,t−k+1:t, st−k) and
p(αt−k+1:t|Yα,t−k+1:t, st−k+1:t,αt−k) is feasible, the weight
updating equation for SIR is given by

ω̃
(i)
t =

π(s0:t,α0:t|Yα,0:t, Ys,0:t, ẑ0:t)
q(s0:t,α0:t|Yα,0:t, Ys,0:t, ẑ0:t−k)

= ω̃
(i)
t−kp(Ys,t−k+1:t|s(i)t−k)p(ẑt|α(i)

0:t, s
(i)
0:t)

× p(Yα,t−k+1:t|s(i)t−k+1:t,α
(i)
t−k). (10)

The remaining question is about how to sample from the pro-
posals as well as to compute the likelihood terms in the weight up-
dating equation. To do this, we adopt the idea of forward-filtering-
backward-sampling (FFBS) [16, 17, 18]. Specifically, for speed
the forward filtering (FF) step updates p(st−1:t|Ys,t−k+1:t, st−k)
to p(st:t+1|Ys,t−k+1:t+1, st−k) in the light of a new measurement
Ys,t+1 recursively. More precisely, in the FF prediction stage the
speeds are updated according to the dynamical model:

p(st:t+1|Ys,t−k+1:t, st−k)

=

∫
p(st−1:t|Ys,t−k+1:t, st−k)p(st+1|st)dst−1. (11)

Then the predictive distribution can be corrected when new measure-
ments become available:

p(st:t+1|Ys,t−k+1:t+1, st−k)

∝ p(st:t+1|Ys,t−k+1:t, st−k)p(Ys,t+1|st:t+1). (12)

Backward sampling (BS) is applied to drawing samples from the
joint state distribution conditioned on all observations:

p(st−k+1:t|Ys,t−k+1:t, st−k) = p(st, st−1|Ys,t−k+1:t, st−k)

×
t−k+1∏
l=t−2

p(sl|sl+1, Ys,t−k+1:l+1, st−k), (13)

where

p(st|st+1, Ys,t−k+1:t+1, st−k)

∝ p(st, st+1|Ys,t−k+1:t+1, st−k).

Last, the likelihood term p(Ys,t−k+1:t|st−k) can be calculated
via Prediction Error Decomposition (PED):

p(Ys,t−k+1:t|st−k) = p(Ys,t−k+1|st−k)

×
t∏

l=t−k+2

p(Ys,l|Ys,t−k+1:l−1, st−k), (14)

with

p(Ys,t|Ys,t−k+1:t−1, st−k) =

∫
p(Ys,t|st−1, st)

× p(st−1, st|Ys,t−k+1:t−1, st−k)dst−1dst.

Similar Kalman style scheme can be adopted to draw samples
from p(αt−k+1:t|Yα,t−k+1:t, st−k+1:t,αt−k). Note although the
problem is formalised in a sequential batch (or section-wise) fashion,
the introduced methods also apply to strictly sequential case where
k = 1. In such a case the proposals degenerate to locally optimal
kernels conditioned on the new measurements and the previous state.

3.1.1. Resample-move (RM)

Resample-move has been a common improvement technique for the
classical particle filters [19]. The mechanism behind RM is reju-
venating degenerated particles after the resampling stage so as to
improve the empirical approximation obtained by SIR. Conditioned
on the states up to time t− k and all measurements, the target distri-
bution in the RM step is expressed as

p(st−k+1:t,αt−k+1:t|s0:t−k,α0:t−k, Ys,0:t, Yα,0:t, ẑ0:t). (15)
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A Metropolis-Hastings (MH) [20] kernel can be designed to pro-
pose {s∗t−k+1:t,α

∗
t−k+1:t} with proposals the same as those used in

SIR. The resulting acceptance ratio is

ρRM = min

(
1, f
(p(Yα,t−k+1:t|s∗t−k+1:t,α

(i)
t−k)

p(Yα,t−k+1:t|s(i)t−k+1:t,α
(i)
t−k)

p(ẑt|s(i)0:t−k,α
(i)
0:t−k, s

∗
t−k+1:t,α

∗
t−k+1:t)

p(ẑt|s(i)0:t−k, α
(i)
0:t−k, s

(i)
t−k+1:t,α

(i)
t−k+1:t)

))
. (16)

Since each selected particle, {s(i)0:t,α
(i)
0:t }, before being moved,

is already approximately distributed according to π0:t, the usual
burn-in period for MCMC is not necessary, as suggested in [19].

3.2. Sequential Markov Chain Monte Carlo (SMCMC)

The adopted SMCMC algorithm, as in most existing SMCMC ap-
proaches [10, 11, 12, 13], follows a mixture sampling based pro-
cedure that selects a joint draw action with probability PJ which
updates all states simultaneously and refinement steps with proba-
bility 1− PJ in which {s0:t−k,α0:t−k} and {st−k+1:t,αt−k+1:t}
are updated individually.

3.2.1. Jointly drawing {α0:t, s0:t}

To make a joint draw with a target distribution defined in Eqn. (9)
at the mth MCMC iteration, two steps are required: first draw
{α∗0:t−k, s∗0:t−k} using the empirical particle representation ob-
tained at time t− k:

q(α0:t−k, s0:t−k|αm−1
0:t−k, s

m−1
0:t−k)

= p̂(s0:t−k,α0:t−k|Yα,0:t−k, Ys,0:t−k, ẑ0:t−k). (17)

This is then followed by the proposal of {α∗t−k+1:t, s
∗
t−k+1:t} con-

ditioned on the states drawn in the first step:

q(αt−k+1:t, st−k+1:t|αm−1
t−k+1:t, s

m−1
t−k+1:t)

= p(αt−k+1:t|Yα,t−k+1:t, st−k+1:t,α
∗
t−k)

× p(st−k+1:t|Ys,t−k+1:t, s
∗
t−k). (18)

As a result, the acceptance ratio for a MH kernel is obtained as
follows,

ρ1 = min

(
1, f
( p(Yα,t−k+1:t|s∗t−k+1:t,α

∗
t−k)

p(Yα,t−k+1:t|sm−1
t−k+1:t,α

m−1
t−k )

p(Ys,t−k+1:t|s∗t−k)p(ẑt|α∗0:t, s∗0:t)
p(Ys,t−k+1:t|sm−1

t−k )p(ẑt|αm−1
0:t , sm−1

0:t )

))
. (19)

3.2.2. Refining {s0:t−k,α0:t−k} and {st−k+1:t,αt−k+1:t}

Coupled with the joint proposal, a series of Metropolis-within-Gibbs
steps can be carried out to refine states respectively. More specifi-
cally, we first refine the estimate of {s0:t−k,α0:t−k} using a MH
kernel with the following target distribution:

p(s0:t−k,α0:t−k|st−k+1:t,αt−k+1:t, Ys,0:t, Yα,0:t, ẑ0:t) (20)

Fig. 1: Results on synthetic data. Top: Tracking performance of different
algorithms on 100 datasets synthesised according to the intrinsic coordinate
model. Bottom: An example of simulated trajectories and tracking results,
with less position measurements (red cross, λPOI = 1/15).

and a proposal identical to that given by Eqn. (17). {s∗0:t−k,α∗0:t−k}
is then accepted according to the following ratio:

ρ2 = min

(
1, f
( p(αm−1

t−k+1|α
∗
t−k, s

m−1
t−k+1)p(sm−1

t−k+1|s
∗
t−k)

p(αm−1
t−k+1|α

m−1
t−k , s

m−1
t−k+1)p(sm−1

t−k+1|s
m−1
t−k )

p(ẑt|s∗0:t−k,α∗0:t−k, sm−1
t−k+1:t,α

m−1
t−k+1:t)

p(ẑt|sm−1
0:t−k,α

m−1
0:t−k, s

m−1
t−k+1:t,α

m−1
t−k+1:t)

))
. (21)

The next step is refining {st−k+1:t,αt−k+1:t}. To do this, see
the RM target distribution as well as its associated acceptance ratio
in Section 3.1.1. Note that after any acceptance event all likelihood
terms need to be updated accordingly.

3.2.3. Parallel SMCMC

Generic SMCMC algorithms can still be inefficient when dealing
with highly correlated variables in high dimensional systems. To ac-
count for this, we propose an intuitive but effective solution which
runs multiple Markov chains in parallel. The idea is to provide
greater diversity and to avoid the situation in which we only have
one chain and it gets stuck at one ancestor trajectory. This algorithm
also introduces a new parameter, which is the number of parallel
chains Nchain.

4. EVALUATION AND RESULTS

4.1. Synthetic data

The proposed inference methods are firstly tested on 100 Monte
Carlo realisations (i.e. 100 trajectories, each for 300 seconds) of
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Fig. 2: Tracking performance across all algorithms on a KITTI dataset [“2011 09 26 drive 0117 sync”].

the problem with varied number of particles. In addition, a parti-
cle filter using locally optimal kernels (LOPT), as in [5], is imple-
mented for comparison. In detail, the parameters used in the simu-
lation are: µT = 15, σT = 30, σP = 220, fs = 1Hz, m = 200,
λ = 3, σb = 0.5◦, σŝ = 1, σ ˆ̇

ψ
= 18◦, σâT = σâP = 0.5,

σx = σy = 5, PJ = 0.5 and Nchain = 4. The time of arrival
of GPS signals is governed by a homogeneous Poisson process with
intensity λPOI = 1/6. Moreover, the total number of iterations
(including burn-in period) used in MCMC based algorithms is set
to be the same as the particle number used in FFBS, FFBS-RM and
LOPT. Note FFBS-RM actually requires twice as much as computa-
tional power (NRM = 1) compared to the others as it has to do RM
for each resampled particle.

The results of the average position RMSEs and their associated
standard deviations are shown in Fig. 1, from which it is clear that
the proposed parallel SMCMC (P-SMCMC) algorithm improves the
tracking performance compared to the generic SMCMC. It also gives
the best estimates with enough iterations. However, the performance
of SMCMC based algorithms drops significantly when not running
the chains for long enough time. As each parallel chain is run for
just a quarter of the total number of iterations, P-SMCMC gives poor
results with 500 iterations.

4.2. Real Data

KITTI [21] ground vehicle datasets are chosen to test our algorithms
as they contain high precision RTK-GPS measurements which can
be treated as ground truth. Fig. 2 shows tracking performance
of different methods on a 66-second dataset, given random initial
heading angle (uniformly in [0, 2π]) and λPOI = 2/3. The red
shaded area along the RTK trajectory represents the precision of
the ground truth position measurements. Additionally, a hybrid
Cartesian model, which combines a constant-acceleration model
(for [x, ẋ, ẍ, y, ẏ, ÿ]T ) with a constant-velocity model (for [ψ, ψ̇]T ),
and a direct integration (with correct initial heading) of the inertial
measurements, are provided as baselines. The relatively poor per-
formance of LOPT, especially when it is around the area without
position measurements, highlights the fact that it is a ‘one-shot’
sequential algorithm. It cannot ‘look ahead’ to use coming position
measurements as a guidance, which is a main difference between it

Fig. 3: Another KITTI dataset [“2011 09 26 drive 005 sync”], with merely
4 position observations.

and the other algorithms. Although enhancement can be achieved
by running a particle smoother backwards many times, it is com-
putationally expensive. On the contrary, FFBS-RM, SMCMC and
P-SMCMC improve the proposed states and the retrospective per-
formance while running in a sequential batch sense and maintaining
relatively low computational cost. This characteristic becomes more
prominent as in Fig. 3.

5. CONCLUSIONS

In this paper we show for the first time how to fuse inertial (ac-
celerometer, gyroscope and speedometer) and asynchronous posi-
tion measurements into an intrinsic coordinate model and to design
corresponding Bayesian inference algorithms. Results on synthetic
and real data have shown that a novel parallel chain based modifica-
tion to the generic SMCMC helps improve performance. This also
encourages further exploration on effects of using different numbers
of parallel chains and introducing interaction between independent
chains in P-SMCMC.
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[17] S. Frühwirth-Schnatter, “Data augmentation and dynamic lin-
ear models,” Journal of Time Series Analysis, vol. 15, no. 2,
pp. 183–202, Mar. 1994.

[18] S. Hore, M. Johannes, H. Lopes, R. McColluch and N. Polson,
“Bayesian computation in finance,” in Frontiers of Statisti-
cal Decision Making and Bayesian Analysis, Ed. MH Chen,
P. Müller, D. Sun and K. Ye, Eds., pp. 383–396. New York:
Springer, Aug. 2010.

[19] WR. Gilks and C. Berzuini, “Following a moving target —
Monte Carlo inference for dynamic Bayesian models,” Journal
of the Royal Statistical Society: Series B (Statistical Method-
ology), vol. 63, no. 1, pp. 127–146, 2001.

[20] C. P. Robert and G. Casella, Monte Carlo statistical methods,
New York: Springer, 2004.

[21] A. Geiger, P. Lenz, C. Stiller and R. Urtasun, “Vision
meets robotics: The KITTI dataset,” International Journal of
Robotics Research, vol. 32, no. 11, pp. 1231–1237, Sept. 2013.

5216


		2019-03-18T11:03:46-0500
	Preflight Ticket Signature




