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ABSTRACT
The paper presents a sparse coding method that models a
signal with amplitude modulation (AM) and frequency mod-
ulation (FM) functions. Indeed, the proposed sparse coding
frequency separation (SCFS) approach is based on a mutli-
component AM-FM modeling where each monocomponent
counterpart is obtained by sparse coding using orthogonal
matching pursuits, and sorted from fine to coarse depending
on its frequency content. SCFS appears to be an efficient
tool to properly separate the frequency content of signals,
and behaves like the empirical mode decomposition. Results
show neat improvements in terms of frequency separation,
tone separation capability, and robustness against noise.

Index Terms—Sparse coding, AM-FM, Frequency separa-
tion, Orthogonal matching pursuit.

I. INTRODUCTION
The empirical mode decomposition (EMD) was intro-

duced for analyzing nonlinear and non-stationary time series
[1]. EMD decomposes any signal as a sum of several
basic components called intrinsic mode functions (IMFs)
and a residual which is the signal trend; IMFs are AM-FM
monocomponent signals and generated in a coarse-to-fine
basis. The step in which IMFs are extracted is a iterative
process called sifting process (SP). Also, it is an interesting
time-frequency analysis tool if combined with Hilbert or
Teager-Huang transforms [2]. EMD is a data-driven and
adaptive method, contrary to wavelet analysis or Cohen
class time-frequency representations, for which either a pre-
defined basis function or a kernel is used [3]. EMD has many
drawbacks and serious limits for properly working, mainly
due to its algorithmic origin and SP step. Efforts have been
done as alternatives to overcome such limits and/or provide
theoretical framework [4]–[8].

EMD can be seen as an AM-FM approximation method,
where each IMFs are narrow band AM-FM functions; AM-
FM functions have been widely studied in signal and image
processing [9]–[11]. For the last several decades, developing
approximation methods have thus been an interesting and
stimulating subject of interests, mainly due to increasing
demands that can be ranged from practical applications
to theoretical frameworks. In mathematical approximations

theory, an accurate signal approximation is made as a
linear combination of a small number of vectors selected
from a carefully constructed basis. Sparse solutions recently
appeared [12] as an interesting approximation method that
can be efficiently solved with various techniques; for in-
stance, using matching pursuits [13], orthogonal MP (OMP)
[14], least absolute shrinkage and selection operator [15],
compressed sensing [16], or more recently using Bregman
iterations [17].

There exists some works related to AM-FM func-
tions/EMD and sparse coding. In fact, a sparse reconstruction
framework was proposed [18] to address the problem of
parameters estimation of signals composed of an unknown
number of chirps with time-varying amplitude. Using a
dictionary refinement strategy, their approach accurately
estimated AM and FM parameters of multiple signal com-
ponents. EMD was used to decompose training signals that
belong to different classes into IMFs [19]. Afterwards, a
raw dictionary whose atoms are IMFs is trained with the
same training signals using matching pursuits, leading to a
sparse learned dictionary. A multiscale dictionary learning
framework was proposed [20] based on an improved EMD.
Basically, this was achieved by looking for the sparsest mul-
tiscale representations of images within the largest possible
dictionary which is composed of IMFs. EMD was combined
with a morphological wavelet transform (MWT) for gaining
spectral–spatial image features [21] that can be integrated by
the sparse multitask learning.

In this paper, contrary to previous works, contributions
are provided on both AM-FM modeling and EMD using a
sparse approach. The motivations behind the established link
between AM-FM and dictionary representations are to view
AM-FM modeling as a sparse approximation problem, and
solve major issues in EMD. The proposed SCFS method
models a signal as a sum of monocomponent AM-FM func-
tions, each term being approximated by sparse coding. SCFS
shows great capabilities for tracking the frequency content of
sines and chirps, increases the tone separation capability, and
is robust in a noisy environment. Moreover, SCFS eliminates
the interpolation process necessary in EMD, which causes
many side effects. This work provides also contributions on
both the comprehension and well established foundation of
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EMD.

II. REVIEW ON EMD & TEAGER OPERATOR
For any signal x(t), EMD can be summarized as [1]:
1) Find x(t) extrema
2) Do linear/spline interpolation of x(t) maxima and x(t)

minima, respectively denoted Emax(t) and Emin(t)
3) Compute the local mean m(t) of x(t):

m(t) = 1
2 (Emax(t) + Emin(t)).

4) Extract detail d(t) = x(t)− m(t)
5) Iterate on the residual m(t)

A function f is an IMF if [1]:
(i) the local mean of f is equal to 0, and

(ii) the number of extrema and zero crossings of f must
either be equal or differ at most by one.

The sifting process (SP) is the refinement iterative steps (1)-
(4) in which the detail d(t) is iterated until its local mean
is equal to 0 in order to get an IMF. The signal x(t) is first
decomposed in the main loop: x(t) = d1(t) + m1(t). Then,
the first residual m1(t) is decomposed: m1(t) = d2(t) +
m2(t), and so on. Finally, EMD decomposes x(t) as:

x(t) =

M∑
i=1

di(t) + r(t), (1)

where di denotes the so-called ith IMF and r(x) is the
residual of the decomposition.

Teager operator (TO) was first introduced [22] for mod-
eling speech signals. For any x(t), TO is defined as:

Ψ[x(t)] =

(
dx

dt
(t)

)2

− x(t)

(
d2x

dt2
(t)

)2

. (2)

Let x(t) = a(t) cos[φ(t)] be a narrow band AM-FM signal,
a(t) is assumed to be a slowly varying function,

φ(t) = ωct+ ωm

∫ t

0

q(u)du+ θ, (3)

ωc denoting the carrier frequency assumed to be slowly
varying or piecewise constant, q(u) is a bounded function;
i.e., |q(u)| ≤ 1, ωm ∈ [0; ωc] is the maximum frequency
deviation and θ represents a constant phase offset. Thus, the
instantaneous frequency is given as:

φ′(t) =
d

dt
φ(t) = ωc + ωmq(t). (4)

TO was later introduced in signal processing, and its
capability to find good approximations of the amplitude
envelope and instanteneous frequency was demonstrated
with minimum approximation errors, subject to the previous
assumptions on a(t) and φ(t), as [23]:

â(t) =
Ψ[x(t)]√
Ψ[x′(t)]

and ω̂(t) =

√
Ψ[x′(t)]

Ψ[x(t)]
. (5)

The discrete TO of a discrete signal x[n] is defined as:

Ψ(x[n]) = x[n]2 − x[n− 1]x[n+ 1]. (6)

Let G[n] = 1− Ψ(x[n]− x[n− 1]) + Ψ(x[n+ 1]− x[n])

4Ψ(x[n])
.

The instantaneous amplitude and the instantaneous fre-
quency of x[n] can be estimated as:

â[n] =

√
Ψ(x[n])

1−G[n]2
and ω̂[n] = arccosG[n]. (7)

III. PROPOSED SPARSE CODING APPROACH
A multicomponent AM-FM representation of a signal x(t)

is generally formulated as:

x(t) =

M−1∑
k=0

ak(t) cos[φk(t)] =

M−1∑
k=0

xk(t), (8)

where ∀ k = 0, · · · ,M − 1, (ak,∇φk)k is the modulation
domain, ak, φk are smooth functions and respectively de-
noting the instantaneous amplitude and phase components;
φ′k is the instantaneous frequency. To ensure a narrow band
constraint, it is common to set the same restrictions for every
ak and φk as for a(t) and φ(t) in equations (3) and (4). In
EMD, xk(t) represent IMFs which are sorted depending on
their frequency content from fine to coarse, and each IMF
is truly a monocomponent narrow band AM-FM signal.

Let x[n] be a signal of N samples, n ∈ {0, 1, · · · , N−1}
and let D ∈ CN×N be the discrete Fourier transform (DFT)
matrix: D[n, k] = exp ( 2iπkn

N ). D is an orthogonal basis of
CN . The DFT of x[n] denoted x̄[k], and the inverse DFT
are respectively given as:

x̄ = Dx, and (9)

x =
1

N
D?x̄, (10)

where D? is the complex conjugate transpose of D. In
a dictionary learning view, (10) can be interpreted as a
representation of the signal x by x̄ under the dictionary D.
Different forms of D will yield different representations.
In continuous time, the atoms (columns) of D will be
continuous functions (of t). One example is the cosine
dictionary: D =

{√
2 cos

[(
k + 1

2

)
πt
]}
k∈N which is an

orthonormal basis of L2([0; 1]), then it yields the broad
family of multicomponent AM-FM representations (8). The
motivations behind the established link between multicom-
ponent AM-FM models and dictionary representations are to
view AM-FM modeling as a sparse approximation problem,
which turns out to resolve main issues of classical EMD.

III-A. Problem statement & Proposed algorithm
For 1 ≤ p < ∞, let ‖· ‖ be the lp norm of any vector

x ∈ RN given as ‖x‖p =

(
N∑
n=1
|x[n]|p

) 1
p

. Let D =

{di}i ∈ RN×K be a given dictionary, each column of D is
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commonly called (dictionary) atom. We aim at representing
any given signal x = (x[n])Nn=1 as a linear combination
of the dictionary atoms x ≈

∑K
k=1 dkαk = Dα, s.t. most

elements of α = (αk)k ∈ RK are zero. In addition, such
an approximation should be optimal in the sense that the
reconstruction error x − Dα is minimal in l2 norm. Thus,
we formulate the problem in the following:

α? = argmin
α∈RK

1

2
‖x−Dα‖22 s.t. ‖α‖p ≤ sp, (11)

where sp is the sparseness measure on α given in terms
of lp norm. Using a Lagrange multiplier, equation (11) is
equivalent to:

α? = argmin
α∈RK

1

2
‖x−Dα‖22 + λ‖α‖p, (12)

where λ > 0 is a tuning parameter.
Using common notation, let ‖α‖0 denote the number of

nonzero elements [24] in α; i.e., ‖α‖0 =
K∑
k=1

(αk 6= 0). For

p = 0, equation (12) yields:

α? = argmin
α∈RK

1

2
‖x−Dα‖22 + λ‖α‖0. (13)

Equation (13) is nonconvex and well known as a NP-hard
problem for finding a solution. Different strategies have
been developed to efficiently solve it; for instance, greedy
algorithms like MP or OMP. In addition to more sparse
solutions, OMP demonstrates improvements on MP as for
each iteration the residual is orthogonalized onto the space
spanned by the selected atoms. Indeed, an update of the
coefficients of all selected dictionary atoms is performed
by means of an orthogonal projection of the signal onto
such selected atoms. This procedure alleviates the issue of
selecting an atom more than once as in MP, which reduces
MP’s performance. In addition, the way coefficients are
selected guarantees OMP convergence [14].

On the other hand, a stopping criterion is required for
EMD to quit the SP loop or for rejecting IMFs that are
grossly non-orthogonal [25]. The criterion is based on the
computation of an a posteriori index of orthogonality in
order to check the orthogonality between IMFs and of the
overall decomposition. Note that the orthogonality property
is not truly reached in EMD [1], since as a Reynolds type
decomposition, orthogonality is always approximately met
up to the degree of nonlinearity.

The main idea of the proposed SCFS method is based on
a multicomponent AM-FM representation of a signal x(t)
(8), each monocomponent counterpart xk(t) is then obtained
using sparse coding (13). To mimic EMD, each xk(t) is
sorted according to its frequency content, from fine to coarse.
This is done thanks to the approximations of the amplitude
and frequency components given by TO (2); each xk(t)
being narrow banded AM-FM functions. SCFS algorithm
is presented in Algorithm 1.

Algorithm 1: SCFS algorithm.
Input : x, D and λ.
Output: Decomposition modes y = (yi)

M
i=1.

1 Sparse coding: compute using OMP

α? := argmin
α∈RK

1

2
‖x−Dα‖22 + λ‖α‖0.

2 Set M = ](αk 6= 0).
3 foreach m = 1 to M do
4 ym ← dmαm
5 Compute the frequency content ω̂m of ym:
6 foreach k = 1 to K do
7 Compute ω̂n[k] using (7)
8 end
9 end

10 Sort columns of ω̂ = (ω̂i)
M
i=1 in descending order.

11 Set y = (yi)
M
i=1 accordingly.

IV. EXPERIMENTS
Decomposition modes obtained with SCFS are referred

to as Mode. We denote by HF and LF the high and low
frequency component, respectively. In all experiments, true
HF (resp. LF) is compared to Mode1 (resp. Mode2 ) and
IMF1 (resp. IMF2); IMFs are obtained from EMD. In our
experiments, the dictionary D is either a family of cosines
or a family of sines and cosines.

The first tested stationary signal is defined on [0; 3],
has 769 samples, and is given by: x1(t) = 2 sin(20πt) +
3 sin(2πt). Results are shown in Fig. 1. The first mode is
well separated by SCFS and EMD as well, but IMF2 suffers
from interpolation issues previously discussed regarding
undershoots, overshoots, . . . .

The second tested signal is defined on [0; 10], has a
linearly varying amplitude and 2561 samples; it is given as:
x2(t) = cos(2πt) + (2t + 1) cos(0.6πt). Its decomposition
is displayed in Fig. 2 showing clearly the limits of EMD
(see IMF1 and IMF2). Notice some amplitude attenuation in
Mode2, while tracking well the frequency content.

The tone separation capability of EMD and the proposed
approach is examined here by considering the following
signal y : [0; 6] 7→ R; t −→ y(t) = y1(t) + y2(t), where
y1(t) = cos(2πt) and y2(t) = ak cos(2πfkt). To better
quantify it, the following L2-based measure is proposed:

M =
∑2
k=1

‖dk − xk‖2
‖xk‖2

, dk being the kth decomposition

mode obtained either with EMD or SCFS. Results are
displayed in Fig. 3 for ak ∈ [10−2; 25] and fk ∈]0; 1].
The blue area represents regions where frequency contents
are well separated; i.e., M = 0. The proposed SCFS shows
noticeable improvements compared to EMD.

The proposed SCFS is finally tested on the following
nonlinear signal defined on [0; 6] with 769 samples:

5194



IMF1 Mode1

IMF2 Mode2

Fig. 1. Decomposition of the signal x1(t), compared with
the true components: SCFS vs EMD.

IMF1 Mode1

IMF2 Mode2

Fig. 2. Decomposition of the signal x2(t), compared with
the true components: SCFS vs EMD.

EMD SCFS

Fig. 3. Tone separation capability: SCFS vs EMD.

x3(t) = 4t cos

(
2π

5
(t2 − 1)

)
+3 sin(2π(t+3)); its decom-

position is shown in Fig. 4. IMF2 fails to correctly track the
LF, compared to Mode2. On the other hand, Mode1 suffers
from an amplitude attenuation, compared to IMF1.

IMF1 Mode1

IMF2 Mode2

Fig. 4. Decomposition of the signal x3(t), compared with
the true components: SCFS vs EMD.

V. CONCLUSION
The proposed multicomponent AM-FM modeling ap-

proach turns out to be an efficient tool to properly sepa-
rate the frequency content of signals. Based on OMP, the
proposed algorithm show great capabilities in frequency
separation of linear and nonlinear signals, tone separation,
and robustness in a noisy environment. Eliminating the
interpolation stage necessary in EMD may explain such
improvements. However, some amplitude attenuation is ob-
served in some modes obtained from nonlinear signals, even
though this issue does not affect the frequency content of
other modes. Ongoing works are on how to resolve that
by using a dictionary learning approach, which takes into
account the frequency characteristics in the learning process.
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