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ABSTRACT

The measure-transformed (MT) MUltiple SIgnal Classification
(MUSIC) algorithm is a robust MUSIC generalization that operates
by applying a transform to the probability measure (distribution) of
the data. In this paper, we first provide an asymptotic mean-squared-
error (MSE) performance analysis of the MT-MUSIC algorithm.
Under some mild assumptions, we show that the MT-MUSIC esti-
mator is asymptotically normal and unbiased, and obtain an analytic
expression for the asymptotic MSE matrix. We then proceed to
develop a strongly consistent estimator for the asymptotic MSE ma-
trix that is constructed from the same data samples being used for
implementation of the MT-MUSIC. This paves the way for develop-
ment of a data-driven procedure for optimal selection of the measure
transformation parameters that minimizes an empirical estimate of
the asymptotic average root MSE (RMSE). Simulation examples
illustrate the performance advantage of the proposed MSE based
optimization of the MT-MUSIC.

Index Terms— Array processing, DOA estimation, probability
measure transform, robust statistics, signal subspace estimation.

1. INTRODUCTION

The multiple signal classification (MUSIC) algorithm [1], [2] is a
popular technique for estimating directions-of-arrival (DOAs) of
noisy signals received by an array of sensors. This algorithm op-
erates by finding DOAs with corresponding steering vectors that
have minimal projections onto the empirical noise-subspace. The
spanning vectors of the empirical noise subspace are obtained from
the eigenvectors corresponding to the minimal eigenvalues of the
sample covariance matrix (SCM).

The SCM is the maximum-likelihood estimator (MLE) of the
covariance under the assumption that the data obeys a normal distri-
bution [3]. This estimator is highly sensitive to large deviations from
normality, that can occur, e.g., in the presence of heavy-tailed noise
that generates outliers, resulting in poor DOAs estimates. To handle
this problem, several robust MUSIC extensions have been proposed
that replace the SCM with robust scatter matrix estimators. In [4],
two robust MUSIC extensions were developed that replace the SCM
with robust sign and rank covariance estimates. In [5], it was pro-
posed to replace the non-robust SCM with robust M-estimators of
scatter [6], such as the MLE (under elliptical observations), Huber’s
[7], and Tyler’s [8]. In this context, we note that a consistent robust
MUSIC extension based on M-estimators of scatter was developed
in [9], [10] for the high-dimensional sample-starved scenario, which
is not considered in this paper. A more elaborate discussion about
the methods proposed in [4], [5], and other important robust MUSIC
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extensions [11]-[15], including their advantages and disadvantages,
appears in [16, Sec. I].

Recently, we developed in [16] a robust MUSIC extension,
called measure-transformed MUSIC (MT-MUSIC) that operates by
applying a transform to the probability measure of the data. In a
more specified manner, in MT-MUSIC the SCM is replaced by an
empirical measure-transformed (MT) covariance. The considered
measure transform, also applied in [17]-[22], is structured by a non-
negative function, called MT-function, that weights the data samples.
In [16], the MT-MUSIC was implemented with a Gaussian-shaped
spherical MT-function parameterized by a width parameter. Un-
der the Gaussian MT-function, we have shown that the empirical
MT-covariance is B-robust [23], and, unlike other robust scatter
matrix estimators, such as the empirical sign-covariance and Tyler’s
M-estimator of scatter, its influence function [23] decays to zero as
the outlier norm approaches infinity, resulting in enhanced resilience
against large-norm outliers. Additionally, under the assumption of
spherical compound Gaussian (CG) noise [5], we proved that the
noise subspace can be determined from the eigen-decomposition of
the Gaussian MT-covariance. In [16], selection of the width param-
eter of the Gaussian MT-function was carried out via suboptimal
procedure that controls the transform-domain Fisher information
loss under nominal Gaussian distribution of the data.

Main contributions: This paper provides an important exten-
sion of the work presented in [16]. First, we analyze the asymptotic
mean-squared-error (MSE) performance the MT-MUSIC algorithm.
We emphasize that the analysis is not restricted to the Gaussian-
shaped MT-function considered in [16]. Furthermore, we do not as-
sume to a specific probability distribution of the data (e.g., Gaussian
or elliptical). Under some mild regularity conditions, we show that
the MT-MUSIC estimator is asymptotically normal and unbiased,
and obtain an analytic expression for the asymptotic MSE matrix.

We go on to develop a strongly consistent estimator for the
asymptotic MSE matrix. The MSE estimator is constructed via
the same data samples used for implementation of the MT-MUSIC
algorithm. This paves the way for development of a data-driven
procedure for optimal selection of the MT-function within some
parametric class. Unlike the suboptimal procedure considered in
[16], the proposed selection procedure minimizes an empirical esti-
mate of the asymptotic average root MSE (RMSE).

The proposed MSE based optimization of the MT-MUSIC is
illustrated in simulation examples involving Gaussian and non-
Gaussian heavy-tailed noise. Throughout these examples, the MT-
MUSIC is implemented with a non-Gaussian outlier-suppressing
MT-function whose parameter is selected via the optimal MSE
based data-driven procedure discussed above. We show that the
optimized non-Gaussian MT-MUSIC outperforms the suboptimal
Gaussian MT-MUSIC [16] and other robust MUSIC extensions.

Paper organization: Section 2 provides a brief review of the
MT-MUSIC algorithm [16]. In Section 3, we analyze the asymp-
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totic MSE performance of the MT-MUSIC and develop a data-driven
procedure for optimal selection of the MT-function. In Section 4, the
MSE based optimization of the MT-MUSIC is illustrated in simula-
tion studies. Finally, section 5 provides concluding remarks. Proofs
for the theorem and proposition stated in the paper will be provided
in the full journal version.

2. MEASURE-TRANSFORMED MUSIC: REVIEW

We begin by introducing the considered sensor array model. Then,
the relevant principles of the probability measure transform [16]-[22]
are presented. Finally, the MT-MUSIC algorithm [16] is reviewed.

2.1. Data model

Consider an array of p sensors that receives signals from q < p
narrow-band far-field incoherent point sources with distinct az-
imuthal DOAs {θ1, ..., θq} ⊂ Θ, where Θ ⊆ [−π, π) denotes the
parameter space. Under this setting, the array output satisfies the
following observation model [2]:

Xn = ASn + Wn, n = 1, . . . , N, (1)

where {Xn ∈ Cp} is an observation process, {Sn ∈ Cq} is a
first-order stationary latent signal process with zero-mean and non-
singular covariance, and {Wn ∈ Cp} denotes a first-order station-
ary zero-mean spatially white noise processes that is independent
of {Sn}. The matrix A , [a(θ1), ...,a(θq)] ∈ Cp×q , is the ar-
ray steering matrix, where a(ϑ) ∈ Cp is a steering vector toward
direction ϑ ∈ Θ. The array is assumed to be unambiguous, i.e.,
any collection of p steering vectors corresponding to distinct DOAs
forms a linearly independent set. Under this assumption the steering
matrix A has a full column rank, and therefore, identification of its
column vectors amounts to identification of the DOAs.

2.2. Probability measure transform

We define the measure space (X ,SX , PX), where X ⊆ Cp is the
observation space of a random vector X, SX is a σ-algebra over X
and PX is a probability measure on SX .

Definition 1. Given a non-negative function u : Cp → R+

satisfying 0 < E[u(X);PX] < ∞, where E[u(X);PX] ,∫
X u (x) dPX (x), a transform on PX is defined as:

Q
(u)
X (A) , Tu [PX] (A) =

∫
A

ϕu (x) dPX (x) , (2)

where A ∈ SX and ϕu (x) , u (x)/E [u (X) ;PX]. The function
u (·) is called the MT-function.

By [16, Prop. 1], Q(u)
X is a probability measure on SX that is

absolutely continuous w.r.t. PX, with Radon-Nikodym derivative
[24] dQ(u)

X (x)/dPX (x) = ϕu (x). Thus, the covariance matrix of
X under Q(u)

X (the MT-covariance) is given by:

Σ
(u)
X , E

[
XXHϕu (X) ;PX

]
− µ(u)

X µ(u)H
X , (3)

where µ(u)
X , E [Xϕu (X) ;PX] denotes the MT-mean. Equation

(3) implies that the MT-covariance is a weighted covariance of X un-
der PX, with the weighting functionϕu (·) defined below (2). Notice
that when the MT-function u(·) is non-zero and constant valued, the
standard covariance is obtained.

Given a sequence of samples X1, . . . ,XN from PX, the empir-
ical MT-covariance is defined as:

Σ̂
(u)

X ,
N∑
n=1

XnXH
n ϕ̂u(Xn)− µ̂(u)

x µ̂(u)H
x , (4)

where ϕ̂u(Xn) , u(Xn)/
∑N
n=1 u(Xn), and the empirical MT-

mean µ̂(u)
X ,

∑N
n=1 Xnϕ̂u(Xn). According to [16, Prop. 2], if

the samples are i.i.d. and E[‖X‖2u(X);PX] < ∞ then Σ̂
(u)

X is a
strongly consistent estimator of Σ

(u)
X .

Robustness of the empirical MT-covariance (4) to outliers was
studied in [16] using its influence function [23], which describes the
effect on the estimator introduced by an infinitesimal contamination
at some point y ∈ Cp. An estimator is said to be B-robust if its
influence function is bounded [23]. In [16, Prop. 3], it was shown
that if there exists a finite positive constant M , such that

u(y) ≤M and u(y)‖y‖2 ≤M, ∀y ∈ Cp (5)

then the influence function of Σ̂
(u)

X is bounded.

2.3. The MT-MUSIC algorithm

The MT-MUSIC [16] is comprised of two steps. First, the MT-
function u(·) is chosen such that the following conditions are sat-
isfied:
A-1) The resulting empirical MT-covariance Σ̂

(u)

X is B-robust.
A-2) Let λ(u)

1 ≥ ... ≥ λ
(u)
p denote the eigenvalues of the MT-

covariance Σ
(u)
X . The p− q smallest eigenvalues of Σ

(u)
X satisfy

λ(u)
q > λ

(u)
q+1 = ... = λ(u)

p , γ(u) (6)

and their corresponding eigenvectors span the null-space of AH ,
also called the noise-subspace.
Second, the DOAs are estimated by finding the q highest maxima of
the measure-transformed pseudo-spectrum defined as:

P̂ (u) (ϑ) , ‖Ĝ(u)Ha (ϑ) ‖−2, (7)

where Ĝ(u) ∈ Cp×p−q denotes the matrix of p − q eigenvectors of
Σ̂

(u)

X corresponding to the smallest eigenvalues.

3. MSE BASED OPTIMIZATION OF THE MT-MUSIC

In this section we analyze the asymptotic MSE performance of the
MT-MUSIC algorithm [16]. Based on this analysis, we obtain a
strongly consistent estimator of the asymptotic MSE. The MSE esti-
mator is then utilized to develop a data-driven procedure for optimal
selection of the MT-function within some parametric family.

3.1. Asymptotic performance analysis

Throughout the analysis, the deterministic vector θ , [θ1, ..., θq]
T

denotes the true DOAs. The random vector θ̂u , [θ̂1, ..., θ̂q]
T will

denote their estimates obtained by the MT-MUSIC. For the sake of
simplicity, we shall assume that a sequence of i.i.d. samples fromPX

is available and that the MT-mean µ(u)
X = 0. We note that the latter

assumption holds whenever the MT-function u(·) is zero-centered
and symmetric and observations are symmetrically distributed about
the origin. Furthermore, it is assumed that condition A-2, stated
above, is satisfied.

The following theorem states sufficient conditions for asymp-
totic normality and unbiasedness of the MT-MUSIC estimator.
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Theorem 1. Assume that the following conditions are satisfied:
B-1) The expectation E[‖X‖4u2(X);PX] is finite.
B-2) The steering vector a(ϑ) has a bounded Euclidean norm.
B-3) a(ϑ) is twice continuously differentiable.
B-4) The true DOAs θ1, ..., θq lie in the interior of Θ.
B-5) The eigenvalues λ(u)

1 , ..., λ
(u)
q associated with the signal sub-

space are distinct. Then,
√
N(θ̂u − θ)

d−→ N (0,R(u)(θ)) as N →∞, (8)

where “ d−→” denotes converges in distribution [25],

R(u) (θ) , E[ϕ2
u(X)Ψu(X,θ)ΨT

u (X,θ);PX], (9)

[Ψu (X,θ)]i ,
Re{ȧH(θi)P

⊥
AXXHE(u)a(θi)}

ȧH(θi)P⊥Aȧ(θi)
, (10)

E(u) , A(AH(Σ
(u)
X − γ(u)Ip)A)−1AH , (11)

ϕu(·) is defined below (2), ȧ(ϑ) , da(ϑ)/dϑ, [v]i denotes the i-th
coordinate of a vector v, P⊥A is the projection matrix onto the null-
space of AH , γ(u) is defined in (6) and Ip denotes a p × p identity
matrix.

Theorem 1 implies that the asymptotic MSE matrix of the MT-
MUSIC estimator is given by:

C(u) (θ) , N−1R(u) (θ) . (12)

We note that asymptotic MSE (12) was obtained without restrict-
ing the probability distribution of the data, PX, to a specific family
of probability distributions (e.g., Gaussian, elliptical). In particular,
when the noise obeys a proper complex normal distribution and the
MT-function u(·) is non-zero and constant valued, it can be shown
that the asymptotic MSE (12) coincides with the one reported in
[26, Eq. 3.11a], [27, Eq. 55] and [28, Eq. 69] for the standard
SCM based MUSIC. This result is intuitive since for any non-zero
and constant valued MT-function the MT-MUSIC coincides with the
standard SCM based MUSIC.

In the following Proposition, a strongly consistent estimate of
(12) is developed. This MSE estimator will be applied in the follow-
ing subsection for optimal selection of the MT-function.

Proposition 1. Define the empirical asymptotic MSE:

Ĉ(u)(θ̂u) , N−1R̂(u)(θ̂u), (13)

where

R̂(u)(θ̂u) , N

N∑
n=1

ϕ̂2
u(Xn)Ψ̂u(Xn, θ̂u)Ψ̂

T

u (Xn, θ̂u), (14)

[Ψ̂u(X, θ̂u)]i ,
Re{ȧH(θ̂i)P

⊥
Â

XXHÊ(u)a(θ̂i)}
ȧH(θ̂i)P⊥Âȧ(θ̂i)

, (15)

Ê(u) , Â(ÂH(Σ̂
(u)

X − γ̂(u)Ip)Â)−1ÂH , (16)

ϕ̂u(·) is defined below (4), Â , [a(θ̂1), ...,a(θ̂q)], and γ̂(u) ,

trace{P⊥
Â

Σ̂
(u)

X }/(p − q). Furthermore, assume that conditions B-
1−B-3, stated in Theorem 1, are satisfied. Then,

N‖Ĉ(u)(θ̂u)−C(u) (θ) ‖ a.s.−→ 0 as N →∞, (17)

where “ a.s.−→” denotes almost sure (a.s.) convergence [25].

3.2. Optimal selection of the MT-function

The MT-function u(·) is selected to minimize an empirical estimate
of the asymptotic average RMSE. This estimate is obtained by taking
the arithmetic mean over the square roots of the diagonal terms that
comprise the empirical asymptotic MSE matrix (13). Hence, the
empirical asymptotic average RMSE takes the form:

Ju,
1

q

q∑
i=1

√
N∑
n=1

ϕ̂2
u(Xn)Re2{ȧH(θ̂i)P⊥ÂXnXH

n Ê(u)a(θ̂i)}

ȧH(θ̂i)P⊥Âȧ(θ̂i)
.

(18)
We emphasize that the objective function (18) is constructed via
the same sequence of data samples used for implementation of the
MT-MUSIC algorithm. Here, the class of MT-functions is confined
to some parametric family {u (X;ω) ,ω ∈ Ω ⊆ Cr} that satisfies
conditions A-1, A-2 and B-1−B-5 stated above. The optimal MT-
function parameter ωopt is obtained via numerical minimization of
the objective function Ju(ω). When ω is one-dimensional, a simple
line search can be implemented. Otherwise, the minimization can be
carried out via greedy search or gradient descent [29].

Throughout the sequel of this paper, the MT-MUSIC algorithm
implemented with MT-function whose parameters are selected ac-
cording to the MSE-based optimization approach, discussed above,
will be referred to as “optimized MT-MUSIC”.

4. NUMERICAL EXAMPLES

In this section, we evaluate the performance of the optimized MT-
MUSIC (MT-MUSICopt) as compared to the suboptimal MT-MUSIC
(MT-MUSICsub) [16], the non-robust SCM based MUSIC (SCM-
MUSIC) [1], [2] and to its robust extensons based on the empirical
sign-covariance (SGN-MUSIC) [4] and Tyler’s scatter M-estimator
(TYLER-MUSIC) [5], [8]. The MT-MUSICsub (implemented with
a Gaussian MT-function) and TYLER-MUSIC are implemented ex-
actly as described in the third and fourth paragraphs of Section VI in
[16]. In all compared algorithms KΘ = 105 equally spaced samples
of the parameter space Θ were used in order to obtain the empirical
pseudo-spectra.

Here, the optimized MT-MUSIC is implemented with the fol-
lowing non-Gaussian parametric MT-function:

u (x;ω) , ‖x‖−ω, ω ∈ R+. (19)

Notice that when ω = 0 the resulting MT-covariance (3) coincides
with the standard covariance. Furthermore, when ω = 2, one can
verify that for centered symmetric distributions, the MT-covariance
is a scaled version of the sign-covariance [4]. Also note that for ω >
2, the MT-function (19) satisfies the robustness conditions stated in
(5) over a sufficiently large subset of Cp that does not contain the
origin. To see this, define the setRε , {y ∈ Cp : ‖y‖ > ε}, where
ε > 0 is some fixed small positive constant. Clearly, u(y;ω) <
ε−ω and u(y;ω)‖y‖2 < ε2−ω for any y ∈ Rε and any fixed ω > 2.
Thus, since PX(Rε) ≈ 1 for sufficiently small ε we conclude that
the empirical MT-covariance is B-robust with high probability, i.e.,
condition A-1 is satisfied with high probability. Furthermore, sim-
ilarly to the proof of Proposition 4 in [16], it can be shown that,
unlike the empirical sign-covariance [4] and Tyler’s M-estimator of
scatter [8], for any fixed ω > 2 the influence function of the empiri-
cal MT-covariance [16, Eq. (17)], associated with the non-Gaussian
MT-function (19), approaches zero as the outlier norm approaches
infinity. This property results in enhanced robustness to large-norm
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outliers. Finally, it is important to note that the MT-function (19) is a
spherically contoured and strictly-positive function. Hence, by [30,
Th. 1], the key condition A-2, required for implementation of the
MT-MUSIC, is satisfied when the noise obeys a CG distribution.

In the following simulation examples, the vector signal Sn in
the array model (1) is comprised of q = 2 statistically independent
BPSK signals with equal variance σ2

S . The steering vector a(θ) ,
1√
p

[
1, e−iπ sin(θ), . . . , e−iπ(p−1) sin(θ)

]T
represents a uniform lin-

ear array with half wavelength spacing corresponding to a far-field
narrow band signal with p = 16 elements. Here, the parameter space
Θ = [−π/2, π/2). The DOAs were set to θ1 = 0◦ and θ2 = 5◦.
We considered two types of zero-centered noise distributions with
isotropic dispersion σ2

ZIp: 1) Gaussian and 2) K-distributed CG
noise [5] with shape parameter ν = 0.75.

In the first simulation example, we compared the asymptotic av-
erage RMSE (obtained by taking the arithmetic mean over the square
roots of the diagonal terms comprising (12)) to its empirical estimate
(18) as a function of the power parameter ω of the MT-function (19)
for sample size N = 1000. The generalized SNR (GSNR), defined
here as GSNR , 10 log10 σ

2
S/σ

2
Z, was set to −10 [dB]. Observing

Figs. 1(a) (Gaussian noise) and 1(b) (K-distributed noise), one sees
that due to the consistency of (13), that follows from Proposition 1,
the compared quantities are close. This illustrates the reliability of
(18) for optimal choice of the MT-function parameter, as discussed
in subsection 3.2. By comparing Figs. 1(a) and 1(b), one can also
notice that for the heavy-tailed K-distributed noise, the asymptotic
average RMSE is minimized for a larger value of ω, that corresponds
to a narrower MT-function, as compared to the light-tailed Gaussian
noise. This result is intuitive since in the presence of heavy-tailed
noise a narrower MT-function with faster decay toward zero should
be applied to effectively mitigate the effect of outliers.

In the second simulation example, we compared the empirical
average RMSE of the optimized MT-MUSIC to those obtained by
the other compared estimators versus GSNR and samples size N .
All empirical average RMSE curves were obtained via 104 Monte-
Carlo trials. The optimal MT-function parameter ωopt was obtained
by minimizing (18) over KΩ = 21 equally spaced grid points of the
interval Ω , [0, 10]. For each type of comparison (GSNR, sam-
ple size), we also report the optimal asymptotic average RMSE of
the MT-MUSIC for the considered MT-function (19). This quantity
was obtained by minimizing the arithmetic mean of the square roots
of the diagonal terms comprising (12) w.r.t. the power parameter
ω ∈ Ω in (19). The sample size in the GSNR analysis was set to
N = 1000. In the sample size analysis, the GSNR was set to −11
[dB] and −21 [dB] for the Gaussian and K-distributed noise, re-
spectively. Observing Figs. 1(c) and 1(e), one can notice that for
the Gaussian noise, all compared estimators attain similar perfor-
mance. Observing Figs. 1(d) and 1(f), one sees that for the heavy-
tailed K-distributed noise, the optimized MT-MUSIC outperforms
the non-robust SCM-MUSIC and all other robust alternatives. This
performance advantage is a consequence of the following proper-
ties. First, as discussed above, the empirical MT-covariance asso-
ciated with the MT-function (19) can gain enhanced robustness to
large-norm outliers as compared to Tyler’s and the sign-covariance
estimators. Second, unlike all compared methods, the proposed ap-
proach involves optimization of a consistent estimate of the asymp-
totic average RMSE of the DOAs estimates.

5. CONCLUSION

In this paper we analyzed the asymptotic MSE performance of the
MT-MUSIC algorithm [16]. Based on this analysis, a data-driven
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Fig. 1. Estimation performance for Gaussian noise (left column)
and K-distributed noise (right column). (a)+(b): Asymptotic av-
erage RMSE predicted by the theory and its empirical estimate (18)
versus the power parameter ω of the non-Gaussian MT-function (19).
(c)-(f): Optimum asymptotic (opt. as.) average RMSE of the MT-
MUSIC and the empirical average RMSE of the MT-MUSICopt as a
function of GSNR (c)+(d) and sample size (e)+(f), as compared to
the empirical average RMSEs of the other examined estimators.

procedure for optimal selection of the MT-function parameters
was developed that minimizes an empirical estimate of the asymp-
totic average RMSE. By specifying the MT-function in a family of
non-Gaussian outlier-suppressing MT-functions, the optimized MT-
MUSIC demonstrated significant performance advantage over the
suboptimal MT-MUSIC [16] and other robust MUSIC extensions.
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