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ABSTRACT
Towards low-latency communication for short-packet trans-
mission, this paper tackles the problem of shuffled linear re-
gression for large-scale wireless sensor networks with header-
free communication by using results from algebraic geome-
try as well as an alternating optimization scheme. The shuf-
fled linear regression problem is to solve a linear system with
shuffled entries of the right hand side vector. However, solv-
ing the shuffled linear system requires high computational
cost. The key idea of our approach is to eliminate the shuf-
fled structure via symmetric polynomials, which leads to a
system of polynomial equations. Considering one of the so-
lutions of the resulting polynomial system as an initializa-
tion to the Expectation Maximization algorithm, we propose
the Algebraically-Initialized Expectation Maximization algo-
rithm. Computational experiments with synthetic data show
that our proposed algorithm is extensively efficient, and it per-
forms well even with noise.

Index Terms— Header-free communication, shuffled lin-
ear regression, permuted linear model, symmetric polynomi-
als, expectation maximization, algebraic geometry.

1. INTRODUCTION

The development of the fifth-generation (5G) technologies is
being accelerated by the increasing demands for new verti-
cal services such as massive Internet of Things (IoT), ultra-
reliable and low-latency communication (URLLC) services,
and massive machine-to-machine communications (MM2M)
[1]. As an example in URLLC services, data packets are ex-
changed with demanding requirements in terms of reliability
(e.g., 99.999%) and latency (e.g., 4 ms). On the other hand,
the 5G system will need to support novel traffic types that use
short packets for emerging applications [2]. For example, in
the scenario of MM2M, the data packets, exchanged among
massive number of devices and containing critical measure-
ments, are usually short, while the reliability and latency for
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Fig. 1. Example of the long and short data packet.

the communication are expected to be ultrahigh and low, re-
spectively. However, as shown in Fig. 1, the control infor-
mation (metadata) is of negligible size compared to the trans-
mitted data (payload) in the long data packet, which as an as-
sumption of current wireless systems is not true for the short
packet. In contrast, in the short packet, the metadata is even
larger than the payload. As a consequence, the transmission
latency may be highly suboptimal when applying traditional
methods relying on this assumption to transmit short packets.
To improve the latency for short-packet transmission, several
attempts have been made [2, 3], among which a simple one is
to exclude from the packet the header containing identity in-
formation, i.e., a bitstring that identifies the source device to
the sink one [4]. This exclusion leads to the header-free com-
munication [5]. Although the header-free communication re-
duces the packet size and hence accelerates the transmission,
recovering the source signal at the sink can be challenging.

1.1. System Model

Consider a massive sensor network where m sensor nodes
s1, . . . , sm sense a one-dimensional signal x∗1, . . . , x

∗
n ∈ R

changed over time (indexed by 1, . . . , n), such as tempera-
ture, pressure, or moisture, from an area of interest and send
the signal to the fusion center for further processing. We
may assume m � n with n sufficiently small, e.g., m =
50, n = 5 [6]. Each sensor si obtains a corrupted measure-
ment x∗j + wi,j at time j for j ∈ {1, . . . , n} =: [n], where
wi,j ∈ R is noise. Since IoT sensors are typically power lim-
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Fig. 2. System model for header-free communication.

ited and the consecutive measurements are highly correlated,
it is quite reasonable for each sensor to send the weighted av-
erage ai,1(x1+wi,1)+· · ·+ai,n(xn+wi,n) of its observations
over time to the fusion center, weighted by ai,1, . . . , ai,n ∈ R
with Σnj=1ai,j = 1, as a way of compressing the information
and reducing the transmission overhead [7]. Finally, the cen-
ter receives from each sensor si the averaged measurement

ỹi := a>i x
∗ + wi, (1)

where ai = [ai,1, . . . , ai,n]>, wi = ai,1wi,1 + · · ·+ai,nwi,n,
and x∗ = [x∗1, . . . , x

∗
n]> is the source vector to be recovered.

When the sensors send packets with the header, the fusion
center understands that the observation ỹi is sent by the sensor
si. Consequently the source vector x∗ satisfies

ỹ = Ax∗ + w, (2)

where ỹ = [ỹ1, . . . , ỹm]>, A = [a1, . . . ,am]>, and w =
[w1, . . . , wm]>. The linear system of equations (2) is called
fixed SNR linear observation model in [7].

However, when the identity information is no longer
available (Fig. 2), what the fusion center receives is in fact
a shuffled observation vector [ỹπ∗(1), . . . , ỹπ∗(m)]

> =: y,
where π∗ presents an unknown permutation, or equiva-
lently y = (Π∗)>ỹ, where the unknown permutation matrix
Π∗ = [eπ∗(1), . . . , eπ∗(m)], with ei the i-th standard basis
vector in Rm. Consequently, the problem of recovering x∗ is
reduced to solving the shuffled linear system

Πy = Ax + w (3)

for x with Π a unknown permutation matrix. This is essen-
tially the problem of shuffled linear regression [8, 9] or per-
muted linear model [3], also known as linear regression with
sparsely permuted data [10], unlabeled ordered sensing [11],
unlabeled sensing [12], signal processing with unlabeled data
[13], or homomorphic sensing [14, 15].

1.2. Prior Art

Consider the shuffled linear system (3) with no noise, i.e.,
w = 0, where 0 ∈ Rm is the zero vector. If A is generic
[8], the authors in [12] show that the source vector x∗ can
be uniquely recovered with probability 1 as long as m ≥ 2n
while m ≥ 2n is necessary for this guarantee. Moreover,
it is proved in [8] that the unique recovery of x∗ is possible
even if m < 2n, provided that n < m and y a permuted
version of a generic vector in the range space of A. On the
other hand, some recent efforts are put on algorithmic devel-
opment for the case w = 0. An obvious algorithm for re-
covering x∗ is brute force: for every possible permutation Π
solve the linear system Πy = Ax. This is an algorithm with
exponential complexity O((m!)n2m), far from being prac-
tical. Both with complexity lower than the brute force one,
the geometric reconstruction algorithm proposed in [16] is of
complexity O(nmn+1) and an algorithm in [17] is proposed
with a complexity at leastm7 [8]. However, the geometric re-
construction algorithm can only handle noise for n = 2 with
a carefully designed matrix A and extending it to higher di-
mensions is nontrivial, while the algorithm in [17] is fragile
in the presence of noise. The authors in [3] propose to solve
the noiseless shuffled linear system via symmetric polynomi-
als, leading to an algorithm with complexity linear in m and
exponential in n, suitable for the case m � n with n small.
However, no algorithm in [3] is proposed for the noisy case.

Another common approach towards solving (3) is by com-
puting the Maximal Likelihood Estimator (MLE)

(x̂ML, Π̂ML) = argmin
Π∈Sm,x∈Rn

‖Πy −Ax‖2 , (4)

where Sm is the set of all m × m permutation matrices.
Assuming that A is drawn from the standard normal distri-
bution, the behavior of the MLE (x̂ML, Π̂ML) in terms of
the SNR is studied in [5, 17, 18]. The authors in [5] show
that with high probability Π̂ML coincides with Π∗ when
SNR ≥ mc1 for c1 some absolute constant. If however
SNR < c2 min{1, n log(log(m))} for some c2 > 0, then
no estimator, including x̂ML, can approximate x∗ provided
m ≥ 3 and n ≥ 22 [17]. Finally, the authors in [18] show that
when the SNR is fixed the ML estimator x̂ML is inconsistent.
On the other hand, although the MLE is NP-hard to compute
when n > 1 [5], the authors in [17] propose a (1 + ε) approx-
imation algorithm of complexity O((m/ε)n). Some works
[9, 19, 20] compute (4) via alternating minimization. This
approach alternatively sorts a vector (in O(m log(m)) time)
and solves a linear system (inO(n2m) time) in each iteration
and thus enjoys an acceptable complexity, it however tends to
fail unless a good initialization is provided.

1.3. Contribution

In this paper we make progress towards efficiently computing
the MLE (4) for the shuffled linear system with noise (3) via
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Algebraically-Initialized Expectation Maximization, abbrevi-
ated as the AI-EM algorithm (§2) [8]. Although the complex-
ity of the proposed algorithm is exponential in n, it is linear in
m (the number of sensors in our discussion). In addition, the
algorithm is able to deal with noise. Hence, it is suitable for
the shuffled linear regression problem in the scenario of IoT
sensor networks with header-free communication, where typ-
ically m is large (e.g., m = 500) and n is small (e.g., n = 4).

2. ALGEBRAICALLY-INITIALIZED EXPECTATION
MAXIMIZATION

In this section we present the AI-EM algorithm [8]. First, we
introduce a polynomial system derived from shuffled linear
system with noise (3) via symmetric polynomials. With the
theoretical guarantee that the derived polynomial system ad-
mits finitely many solutions [8], we solve it and obtain finitely
many roots. Finally, we extract from the roots the most suit-
able one and use it as an initialization to the Expectation Max-
imization algorithm.

2.1. Symmetric Polynomials and the Polynomial System

To begin with, let R[z] := R[z1, . . . , zm] be the set of polyno-
mials with real coefficients over variables z := [z1, . . . , zm].
A polynomial p(z) := p(z1, . . . , zm) ∈ R[z] is symmetric if
it is invariant to any permutation of the variables z, i.e.,

p(z) = p(zπ(1), . . . , zπ(m)) =: p(Πz), (5)

where π is a permutation on [m] and Π ∈ Rm×m is the cor-
responding permutation matrix. The power-sum polynomial

pk(z) = Σmi=1z
k
i , (6)

for example, satisfies (5) for k some non-negative integer, and
thus is symmetric.

As shown in [3], symmetric polynomials are used to elim-
inate the permutation matrix Π in (3). To see this, let A,y,w
be as in (3) and psym ∈ R[z] a symmetric polynomial in R[z].
Then given any solution (Π∗,x∗) for (3), we have

psym(Ax∗ + w) = psym(Π∗y) = psym(y)

⇐⇒ psym(Ax∗ + w)− psym(y) = 0.
(7)

Specifically, every solution for (3) needs to satisfy n polyno-
mial equations in n variables x1, . . . , xn

p̃k(x) := pk(Ax + w)− pk(y) = 0, k ∈ [n], (8)

where pk is the power-sum polynomial as defined in (6).
Since the vector w in (8) is unknown, the solutions of the
polynomial system P̃ given by p̃1(x) = · · · = p̃n(x) = 0 are
not available. Instead we resort to an alternative polynomial
system P̂ ,

p̂k(x) := pk(Ax)− pk(y) = 0, k ∈ [n]. (9)

Then since A,y are both known, the polynomial system P̂
contains n equations in n variables x1, . . . , xn. However,
does the system P̂ admit any solutions? If yes then are there
finitely many? Quite importantly, [8] has established that
as long as A is generic, the solution set V := {x̂ ∈ Cn :
p̂k(x̂) = 0,∀k ∈ [n]} of the polynomial system P̂ is almost
always non-empty and finite, containing at most n! number
of points. Consequently, the system P̂ is readily solvable by
standard algorithms in numerical algebraic geometry. One
may expect at least one real root of P̂ to be a reasonably good
approximation to the solution for our original problem (3).

2.2. Algebraically-Initialized Expectation Maximization

Algorithm 1 Algebraically-Initialized Expectation Maximization

1: procedure AI-EM(y ∈ Rm, A ∈ Rm×n, T ∈ N)
2: {x̂i}Li=1 ← solutions of P̂ (9);
3: {(x̂i)R}Li=1 ← {a : a+ ib ∈ {x̂i}Li=1};
4: x̂0 ← argmini∈[L] {minΠ ‖Πy −A(x̂i)R‖2};
5: for t = 1 : T do
6: Πt ← argminΠ ‖Πy −Axt−1‖2;
7: xt ← argminx∈Rn ‖Πty −Ax‖2;
8: end for
9: Return xt.

10: end procedure

As discussed in §2.1, we can solve the polynomial system
P̂ and obtain roots {x̂i}Li=1 with 0 < L ≤ n!. Since the
polynomial system P̂ is zero-dimensional [8], solving it re-
quires a double-exponential or exponential complexity in n,
depending on the algorithms used [21]. On the other hand,
it demands a complexity linear in m because of the matrix-
vector product Ax.

Because the roots {x̂i}Li=1 obtained from solving the sys-
tem P̂ are potentially complex and the source vector x∗ is in
Rn, we only work with the real parts {(x̂i)R}Li=1 of the roots
{x̂i}Li=1. From these roots we select the estimate x̂AI that best
approximates the ML estimator x̂ML, i.e.,

x̂AI := argmin
i∈[L]

{
min
Π
‖Πy −A(x̂i)R‖2

}
. (10)

We note that by the rearrangement inequality of [22], the in-
ner minimization minΠ ‖Πy −A(x̂i)R‖2 in (10) is achieved
when Π is the permutation matrix that permutes the entries
of y according to the order of the elements of A(x̂i)R, and
hence the minimization problem can be solved via sorting [9],
a procedure of complexityO(m log(m)). Also noting that the
number L of estimates is at most n! [8], the computation of
x̂AI is of complexity O((n!)m log(m)).

Going further, we use the algebraic initialization x̂AI as
an initialization to the Expectation Maximization (EM) algo-
rithm in [9], which alternatively updates Π and x. The up-
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date of Π is done by sorting in O(m log(m)) time, while up-
dating x involves solving a linear system, entailing a com-
plexity of O(n2m). Hence this EM algorithm is of com-
plexity O(T (m log(m) + n2m)) with T the number of it-
erations. The complete procedure mentioned above, referred
as to Algebraically-Initialized Expectation Maximization (AI-
EM), is presented in Algorithm 1.

3. SIMULATION RESULTS

Methods. We evaluate the performance of the AI-EM algo-
rithm, and we also provide a comparison with another EM-
like algorithm proposed in [9] and the robust regression algo-
rithm in [10]. The algorithm in [9] computes the MLE via al-
ternating minimization exactly as in Algorithm 1, except that
it initializes the computation by the least-squares solution

argmin
x∈Rn

‖y −Ax‖2. (11)

For both AI-EM and the algorithm in [9] we set the number
T of iterations to be 100. On the other hand, the algorithm in
[10] treats permuted data as outliers and uses a robust regres-
sion formulation to estimate the source vector x∗.
Data. The experiments for the shuffled linear system with
noise (3) rely on synthetic data generated randomly in the fol-
lowing way. The noise vector w ∈ Rn is sampled from the
zero-mean distribution with covariance matrix σ2Im, while
the first n−1 columns of A and the source vector x∗ ∈ Rn are
drawn from corresponding standard normal distributions. The
last column of A is set to a vector so that the sum of each row
of A is 1. With w,A and x∗ comes the corrupted observation
ỹ := Ax∗ + w. We further permute ỹ by left-multiplying a
matrix (Π∗)> uniformly drawn from Pm. In this way we
have obtained as inputs the data A and (Π∗)>ỹ =: y for the
algorithms to be evaluated.
Metrics. We report the relative estimation error of x∗ for the
estimate x̂, computed by 100× ‖x

∗−x̂‖2
‖x∗‖2 %.

Results. Fig. 3 shows the relative estimation error of two al-
gorithms for SNR = 0 : 10 : 60 with n = 4 and m =
500. In agreement with the results in [17], the estimation er-
ror of the AI-EM algorithm (red) is large when the SNR is
small. As the SNR increases, the error decreases and tends
to converge, finally achieving an estimation error of 0.4% for
SNR = 60. On the other hand, the algorithm (blue) in [9] fails
since the resulting estimation errors are consistently larger
than 100% and the same happens to the algorithm (black) in
[10]. This suggests that the least-squares initialization for al-
ternating minimization may not be a good choice when data
are fully shuffled [8], and that the assumption of sparsely per-
muted data in [10] is essential for their algorithm to work [15].
However, the scenario where data is fully shuffled is exactly
the case in header-free communication since all sensors tac-
itly send packets without identity information which then ar-
rive at the fusion center in an arbitrary order.
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Fig. 3. Estimation error for varying SNR with m = 500, n =
4 fixed, averaged over 10000 independent trials.

We also report the running times of the AI-EM algorithm
with m = 500,SNR = 30 fixed and n varying from 3 to
6. To solve the polynomial system P̂ , we use our custom
Gröbner basis solvers automatically generated based on elim-
ination template techniques [23] for n = 3, 4, and a standard
homotopy-based solver, Bertini [24], for n = 5, 6. On a PC
(Intel i7-8650, 1.9GHz, 16GB), the AI-EM algorithm runs in
5 milliseconds for n = 3, 11 milliseconds for n = 4, 45 sec-
onds for n = 5, and 47 minutes for n = 6. The efficiency
for n = 3, 4 is on account of the solver generator utilizing
the special structure of the polynomial system P̂ , while the
exponentially increasing running time for n = 5, 6 is partly
because the general-purpose solver Bertini is slower than the
custom one, and partly because the polynomial system is be-
coming exponentially complicated.

4. CONCLUSION

We presented a working solution to shuffled linear regression
for massive IoT sensor networks with header-free communi-
cation. The key algorithmic idea was to solve a polynomial
system derived from the original problem to obtain some so-
lutions and then extract from the solutions the most suitable
one as initialization to the alternating minimization algorithm.
The proposed algorithm was shown to be suitable for this
problem since its complexity is linear in the number of sen-
sors. Moreover, not limited to sensor networks with header-
free communication, the proposed algorithm can be widely
applied to other applications such as simultaneous pose and
correspondence estimation [25], multi-target tracking [26] in
computer vision and so on.
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