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ABSTRACT

We study the capabilities of a filter configuration where a linear fil-
ter is applied to an improper vector, and the output is processed by
scalar widely linear filters afterwards. Assuming that this filter con-
figuration is used to estimate a vector of interest from a noisy obser-
vation, we aim at finding the optimal filter coefficients in the sense
of minimizing the mean square error. To this end, we propose a filter
design algorithm based on alternating optimization. The resulting
filter turns out to achieve an intermediate performance between the
optimal widely linear filter and the optimal linear filter. As an appli-
cation example, we discuss how the considered filter structure fits to
the concept of linear transceivers in communication systems.

Index Terms— improper signals, MMSE filter, widely linear.

1. INTRODUCTION

Complex signals are called improper if they have (linear) correla-
tions with their own complex conjugates [1,2]. This is the case, e.g.,
for noncircular Gaussian signals. Whenever the observation and/or
the quantity of interest in an estimation problem are improper, so-
called widely linear estimation [3] can outperform conventional lin-
ear estimators. On the other hand, widely linear estimation does not
bring any benefits if all signals in a system are proper.

When implementing widely linear filtering via a real-valued rep-
resentation (e.g. [2]), the computational complexity of the filtering
operations is generally not higher than for linear filters. However,
it can still be preferable to stick to linear filters in some applica-
tions, e.g., because a lower number of filter coefficients need to be
stored, or if the aim is to improve an existing system that is based on
linear filters without drastic changes to the structure of the system.
Another example are communication systems, where widely linear
filtering can be easily implemented before the modulation stage and
after the demodulation stage, but not for a modulated signal where
the inphase and quadrature components are superimposed.

Our aim is to study whether knowledge about the impropriety
of the involved signals can be exploited by introducing some aspects
of widely linear filtering into the system design without completely
replacing linear filters by widely linear filters. As a first step to-
wards answering this question, this paper considers a simple estima-
tion problem, where a random vector of interest is to be estimated
from a noisy observation vector. In this setting, we study a two-stage
filter that first applies a conventional linear filter to the whole vector
and performs component-wise widely linear filtering afterwards.

A two-stage approach for widely linear filtering was also consid-
ered in [4], but that method estimates scalars (instead of vectors) by
first performing a dimensionality reduction and then using a general
widely linear filter in the low-dimensional space (instead of applying
a component-wise widely linear filter with full dimensional). In [5],
the coexistence of improper signals and linear transmit filters was

studied, but the question we consider here did not arise since no re-
striction on the receive filters (estimators) were imposed in [5].

In Section 2, we give motivations for this particular filter struc-
ture, and we briefly review the theory of improper signals and widely
linear operations. We then propose a simple filter design method that
already brings gains over purely linear filtering (Section 3), and we
further improve the filter by an iterative optimization (Section 4).
After some numerical experiments in Section 5, we give an outlook
to related questions for future research in Section 6.

Notation: For easy distinction, we use sans-serif font for com-
plex quantities, and serif font for real quantities.

2. MOTIVATION AND MATHEMATICAL BACKGROUND

Consider the estimation of a scalar real-valued random variable x
from a scalar complex observation y = hx+ n, where h ∈ C, and n
is circularly symmetric complex Gaussian noise. Figure 1 illustrates
an example where x comes from a finite set {±d}. The estimator
should rotate the signal of interest back to the real axis and adjust the
magnitude in a way that the mean square error (MSE) is minimized.

It obviously makes sense to apply a real part operator in addition
since we know that the imaginary part contains only noise after an
appropriate rotation. However, this last step cannot be performed by
a linear filter: the real part is not a linear operation since <(ax) =
a<(x) is not fulfilled for all a ∈ C. Instead, it is a very simple
special case of a so-called widely linear operation.

Let us now extend this idea to vector-valued scenarios and to
scenarios where we do not deal with real-valued signals, but with
arbitrary improper random vectors. Since a simple intuitive argu-
mentation as above is no longer possible, we need to introduce the
concepts of improper random vectors and of widely linear filters.
In addition to the conventional covariance matrix Cx = E[(x −
E[x])(x − E[x])H], we can define the pseudocovariance matrix [1]

C̃x = E[(x − E[x])(x − E[x])T]. (1)

Note that we assume mean zero for all random vectors throughout
this paper for the sake of simplicity, so that we have Cx = E[xxH]

and C̃x = E[xxT]. If the pseudocovariance matrix vanishes, the
random vector is called proper [1]. Otherwise, i.e., if C̃x 6= 0, the
vector x is called improper [2]. In the above example, it is easy to
verify that both scalars x and y are improper.

A widely linear operation y 7→ f (y) = ALy + ACLy∗ [3] can
be equivalently written as

f (y) = (AL + ACL)<(y) + j(AL − ACL)=(y) (2)

i.e., it can be implemented by first splitting the input into its real and
imaginary parts, and then performing individual linear filtering of
the two components. However, first performing a linear filtering of
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Fig. 1: In addition to compensating the effect of h, a widely linear
filter can remove a real noise dimension in this example.

the complete vector and applying real and imaginary part operators
afterwards—in analogy to the minimal example from above—is in
general not an equivalent structure. To see this, note that the number
of filter coefficients in the two matrices AL and ACL is twice as high
as in a linear filter, where the conjugate linear part ACL is zero.

Consequently, the full potential of widely linear filtering can in
general not be exploited by keeping a linear filter and applying scalar
widely linear operations to the components of the filter output. The
question is thus how far we can get with the restrictive filter structure

x̂ = diag{ak}z + diag{bk}z∗ with z = Gy (3)

where diag is used to denote a diagonal matrix. Since ak, bk ∈ C
for k = 1, . . . ,K, and G ∈ CK×N , this description has a total
of KN + 2K complex coefficients compared to 2KN in case of a
general widely linear filter.1

2.1. Application Example: Linear Transceivers

As a second motivation, consider a communication scenario where
data is transmitted by means of improper signaling. This can help
to reduce the harmfulness of the interference to other users, and was
proposed, e.g., for secondary users in cognitive radio systems [6, 7].

A common assumption are so-called linear transceivers [8]. In
this case, the data transmission is described by x̂ = R(HTx + η),
where T and R are linear transmit and receive filters, H ∈ CN×M is
the channel matrix, and η is additive Gaussian noise and interference.
In the context of linear transceivers, the symbol vector x is usually
assumed to be circularly symmetric (and thus proper) Gaussian with
mean zero and Cx = IK , where K is the number of data streams.

If the aim is to transmit improper signals instead, it was proposed
to replace the linear transceivers by widely linear transceivers [5, 9],
i.e., to replace the linear transmit and receive filters by widely linear
filters. We are now interested in the question whether transmission
of improper signals can also be performed in a sensible manner with
linear transceivers. For simplicity, we assume K = M = N .

Since digital transmission always incorporates nonlinear opera-
tions, such as encoding, detection, etc., linear transceivers are usu-
ally understood as transmit strategies where nonlinear operations are
only applied to single data streams while all filtering operations that
involve multiple data streams have to be linear [9]. According to this
definition, applying a widely linear filter to a single stream directly
after encoding or directly before the detection does not violate the
assumption of linear transceivers. On the other hand, if a widely lin-
ear operation is applied to a whole vector of data streams, we have
implemented widely linear transceivers instead [5, 9].

Let us first consider the transmitter side. The achievable rate
over the link is related to the mutual information between the trans-
mit signal s = Tx and the received signal y = HTx + η. Since all

1This representation is not unique since one of the factors ak and bk
for each k could be moved into the matrix G . However, this ambiguous
formulation facilitates the following considerations. For an implementation,
the number of coefficients could then be reduced to (N + 1)K.

signals are assumed to be Gaussian, this mutual information depends
only on the second-order properties of the transmit signal and of the
noise, i.e., on their covariance matrices and pseudocovariance matri-
ces (see, e.g., [10]). For any pair of Cs and C̃s that we want to create,
we can consider a special form of the singular value decomposition

UKVH = C−
1
2

s C̃sC
−T

2
s with VH = UT (4)

which is called Takagi’s factorization and exists since C−
1
2

s C̃sC
−T

2
s

is a complex symmetric matrix [2]. The diagonal entries of K can
be interpreted as impropriety coefficients [2], which indicate the
strength of impropriety. To create a transmit vector with the desired
second-order properties, we can generate a vector x with covariance
matrix Cx = IK and pseudocovariance matrix C̃x = K and process

this vector by a strictly linear filter T = C
1
2
s U . It is easy to verify

that this indeed leads to E[ssH] = Cs and E[ssT] = C̃s .
As Cx and C̃x are both diagonal, x has uncorrelated entries, and

the individual impropriety of the components can be created already
as a part of the nonlinear encoding and symbol mapping. Thus, arbi-
trary improper signals can be transmitted with a linear transmitter.2

We now turn our attention to the receiver side. Under ideal con-
ditions, namely if the channel can be inverted and the noise is neg-

ligible, the linear filter R = UHC−
1
2

s H−1 can recover the vector x .
As the components of the recovered vector are uncorrelated, the non-
linear detection and decoding operations can operate on each com-
ponent separately and can account for the individual impropriety of
the components. In this paper, we restrict our considerations to an
MSE perspective and do not focus on the further nonlinear opera-
tions. Therefore, we process the components by scalar widely linear
filters to minimize the MSE. This does not contradict the assumption
of linear transceivers as it happens on a per-stream basis.

However, if we take the noise into account, the above receive
filter leads to correlated noise, making per-stream decoding subopti-
mal. On the other hand, transceivers that are designed such that cor-
relations of the errors on the individual streams are avoided cannot
guarantee that cross-improprieties between the streams are removed.
Due to these conflicting interests, linear transceivers can in general
not achieve the same performance as widely linear transceivers if
improper signals are involved. In this paper, we study a best-effort
approach for dealing with impropriety as good as possible (in terms
of minimal MSE) despite the restrictions to the transceiver structure.

2.2. Minimum Mean Square Error Criterion

Our design criterion in the noisy case is the minimum mean square
error (MMSE) criterion, i.e., we aim at solving

min
G, (ak,bk)∀k

E[‖ diag{ak}Gy + diag{bk}(Gy)∗ − x‖22]. (5)

As it is not obvious how to solve this problem jointly in both groups
of variables, we resort to an alternating optimization approach. Al-
though we do not claim this method to be globally optimal (see Sec-
tion 6), it leads to remarkable results in numerical simulations.

In order to not limit our considerations to the application exam-
ple described above, the derivations in the following sections apply
to a general estimation problem where a quantity of interest x has to
be estimated from a noisy observation y , and the connection between

2An alternative would be to start with a proper x and to introduce the
component-wise impropriety by means of scalar widely linear filters. The
combination of these filters with the the linear transmit filter would then be
exactly the reverse structure of the filter structure considered in this paper.
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these two quantities is described by a given cross-covariance matrix
Cxy = E[xyH] and a cross-pseudocovariance matrix C̃xy = E[xyT].
Moreover, the individual second-order properties of x and y are de-
scribed by the covariance matrices Cx , Cy and by the pseudocovari-
ance matrices C̃x , C̃y . For the data transmission example, we have

Cx = IK C̃x = K (6)

Cy = HTTHHH + Cη C̃y = HTKTTHT + C̃η (7)

Cxy = THHH C̃xy = KTTHT. (8)

3. BASIC FILTER DESIGN

Before introducing the iterative alternating optimization method, we
first study a simple heuristic approach. To this end, we design the
linear filter G as if it was the only filter, i.e., we optimize G for fixed
ak = 1 and bk = 0 for all k. The optimization can be rewritten as

min
G

E[‖Gy − x‖22] (9)

which is solved by a conventional linear MMSE filter

G = CxyC−1
y . (10)

In a second step, we fix G and optimize over ak and bk, i.e.,

min
(ak,bk)∀k

K∑
k=1

E[|akzk + bkz∗k − xk|2] (11)

with z = [z1, . . . , zK ]T = Gy . Obviously, this optimization can be
solved for every component separately, and the solution is given by
the optimal widely linear MMSE filter [3]

ak =
cxkzk − c̃xkzkc−1

zk c̃∗zk
czk − |c̃zk |2c

−1
zk

bk =
c̃xkzk − cxkzkc−1

zk c̃zk

czk − |c̃zk |2c
−1
zk

(12)

for estimating xk from zk. Here,

czk = eT
kGCyGHek c̃zk = eT

kGC̃yGTek (13)

cxkzk = eT
kCxyGHek c̃xkzk = eT

k C̃xyGTek. (14)

where ek is the kth canonical unit vector.
From [3], it is known that the optimal widely linear MMSE filter

strictly outperforms the optimal linear MMSE filter unless

c̃xkzk − cxkzkc
−1
zk c̃∗zk = 0 (15)

in which case both filters perform equally. In particular, (15) holds if
all involved signals are jointly proper. On the other hand, if improper
signals are involved, the condition is in general not fulfilled.

Since G is the optimal linear MMSE filter, the original choice
ak = 1 and bk = 0 (where the scalar signal is not modified any
further) corresponds to the optimal scalar linear MMSE filter. Re-
placing this choice by the widely linear solution (12) leads to a strict
reduction of the mean square error, except in cases where (15) holds.

4. ITERATIVE FILTER DESIGN

After optimizing the coefficients ak and bk of the scalar widely
linear filters, the assumptions under which G had been optimized
(ak = 1 and bk = 0) are no longer valid. This means that we can
potentially find an improved linear filter G by solving

min
G

E[‖diag{ak}Gy + diag{bk}(Gy)∗ − x‖22] (16)

after plugging in the solutions for ak and bk from (12). If this leads
to a different solution for G , we can again update ak and bk, and
we can repeat this procedure until convergence. Since solving the
optimization in (11) or (16) cannot increase the MSE, this iteration
produces a monotonic sequence of MSE values, so that convergence
in terms of the MSE is guaranteed.

The remaining task is to derive a solution to (16). The qualitative
difference between this problem and the optimization in (9) is that
we are now looking for a linear filter that minimizes the MSE of an
expression that involves a subsequently applied widely linear filter.
Therefore, the well-known equation (10) can no longer be used.

4.1. Composite Real Representation

We use the composite real representations

v̌ =

[
<(v)
=(v)

]
M̀ =

[
<(M) −=(M)
=(M) <(M)

]
(17)

of complex vectors and matrices to simplify the following deriva-
tions. A widely linear transformation (2) can then be written as
(e.g., [11, Th. 2])

f̌(y̌) = Ay̌ with A = ÀL + ÁCL (18)

where

ÁCL =

[
<(ACL) =(ACL)
=(ACL) −<(ACL)

]
. (19)

Matrices with the block structures in (17) and (19) form two orthog-
onal subspaces which together span the whole vector space of real-
valued matrices of appropriate dimensions [11, Lemma 5].

This implies that a real-valued linear mapping y̌ 7→ Ay̌ cor-
responds to a linear mapping in the complex domain only if A has
the special block structure shown in (17). In [11, 12], such matrices
were called block-skew-circulant with 2×2 blocks (BSC2), and they
were called matrices with complex structure in [13]. Matrices with
the block structure in (19) were called block-Hankel-skew-circulant
with 2×2 blocks (BHSC2) in [11]. In this paper, we use L to denote
the subspace of BSC2 matrices (where the dimensions become clear
from the context), and L⊥ for the orthogonal complement, i.e., for
the subspace of BHSC2 matrices. We use grave and acute accents
(•̀ and •́) to denote BSC2 or BHSC2 matrices, respectively.

The orthogonal projections to L and L⊥ read as [11, Lemma 6]

PL

([
C1 C2

C3 C4

])
=

1

2

[
C1 +C4 C2 −C3

C3 −C2 C1 +C4

]
(20)

PL⊥

([
C1 C2

C3 C4

])
=

1

2

[
C1 −C4 C2 +C3

C2 +C3 C4 −C1

]
(21)

and we note the following result from [11, Lemma 3].

Lemma 1. Let À, À′ be BSC2 and B́, B́′ be BHSC2 with appro-
priate sizes. Then, ÀÀ′ is BSC2, B́B́′ is BSC2, ÀB́′ is BHSC2,
and B́À′ is BHSC2.

4.2. Optimal Linear Filter

In the real-valued representation, we can write (16) as

min
G̀

E[‖SG̀y̌ − x̌‖22] s. t. PL⊥(G̀) = 0 (22)

where S = S̀L + ŚCL with SL = diag{ak} and SCL = diag{bk}.
As G̀ is constrained to be a BSC2 matrix, it corresponds to a com-
plex linear operation. After solving (22), the optimizer G of (16) for
given ak and bk can thus be obtained via (17).
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Fig. 2: Achieved MSE over SNR σ−2 in dB. Scenario 1: M = 2, N = 4, C̃x = 0, C̃η = σ20.9I4. Scenario 2: M = N = 4,
C̃x = diag{0.9, 0.8, 0.7, 0.6}, C̃η = σ2 diag{0.9, 0.8, 0.7, 0.6}. Scenario 3: M = N = 4, C̃x = diag{0.9, 0.8, 0.7, 0.6}, C̃η = 0.
Scenario 4: M = 6, N = 8, C̃x = diag{1, 1, 1, 1, 0, 0}, C̃η = 0. Scenario 5: M = N = 8, C̃x = I8, C̃η = 0.

We introduce a Lagrangian multiplier Λ = Λ̀+ Λ́, and we use
the trace operator tr[•] to write the Lagrangian function

Φ = tr[SG̀Cy̌G̀
TST + SG̀CT

x̌y̌ +Cx̌y̌G̀
TST +Cx̌]

+ tr[ΛT PL⊥(G̀)] (23)

where Cy̌ = E[y̌y̌T], Cx̌ = E[x̌x̌T], and Cx̌y̌ = E[x̌y̌T]. As
the derivative of the last summand in (23) is PL⊥(Λ) = Λ́ due
to [12, Appendix A], we obtain

∂Φ

∂G̀
= 2STSG̀Cy̌ − 2STCx̌y̌ + Λ́. (24)

To find a pair Λ́ ∈ L⊥, G̀ ∈ L such that ∂Φ
∂G̀

= 0, we define

D̀ + D́ = STS, È + É = STCx̌y̌, F̀ + F́ = Cy̌ (25)

where the separation into a BSC2 component and a BHSC2 com-
ponent can be performed using the projections PL and PL⊥ . Using
Lemma 1, we can write down two separate equations for the BSC2

and the BHSC2 components of ∂Φ

∂G̀
. We obtain

0
!
= 2(D̀G̀F̀ + D́G̀F́ − È) ∈ L (26)

0
!
= 2(D̀G̀F́ + D́G̀F̀ − É) + Λ́ ∈ L⊥ (27)

where we have exploited that G̀ is a BSC2 matrix due to the con-
straint G̀ ∈ L. Since Λ́ is an arbitrary BHSC2 matrix, it is always
possible to choose Λ́ such that (27) is fulfilled. Using vec(•) to de-
note the vectorization of a matrix and ⊗ for the Kronecker product,
we can obtain the optimizer of (22) by solving (26) for

vec(G̀) =
(
(F̀T ⊗ D̀) + (F́T ⊗ D́)

)−1
vec(È). (28)

5. NUMERICAL RESULTS

For the numerical simulations, we use the example of a data trans-
mission as introduced in Section 2.1. All results are averaged over
1000 realizations of the channel matrix H , whose entries are gener-
ated as i.i.d. circularly symmetric Gaussian random variables with

zero-mean and unit variance. For the sake of simplicity, the transmit
filter is set to T = IM , i.e., we have K = M . To facilitate the
interpretation, we have chosen (scaled) identity covariance matrices
Cx = IM and Cη = σ2IN , and diagonal pseudocovariance matrices
whose diagonal entries can (after normalization by σ2) be directly
interpreted as impropriety coefficients (see, e.g., [2]). Further simu-
lation parameters are specified in the caption of Fig. 2.

In the first scenario, where we have a proper transmit signal,
but improper noise, scalar widely linear (SWL) filtering can bring
benefits over linear (L) filtering only in the low-SNR regime. For
high SNR, widely linear (WL) filtering clearly outperforms the other
approaches. An improvement due to SWL can be observed over a
larger SNR range in Scenario 2 (improper signal and noise) and Sce-
nario 3 (improper signal, but proper noise). Scenario 4 shows an
example where x contains proper components and maximally im-
proper components while the noise is proper. It is noteworthy that all
curves converge to the same high-SNR slope here, but notable offsets
between all schemes remain. The most remarkable result is observed
in Scenario 5, where x is maximally improper. While purely linear
filtering leads to a worse slope in this scenario, the SWL filter ob-
tained by alternating optimization achieves the same performance as
a widely linear filter. This effect occurs also with improper noise,
but the plot for improper noise is omitted due to space constraints.

6. CONCLUSION AND OUTLOOK

Our simulations have revealed that the considered combination of
linear estimation and scalar widely linear estimation can in some
cases be an interesting alternative to a vector-valued widely linear
filter. However, we have also observed that this approach does not
always exploit the full potential of widely linear estimation.

It is currently an open question whether the employed alternat-
ing optimization method converges to the global optimum among all
filters with the considered structure. This should be studied in future,
e.g., based on the sufficient conditions from [14, 15].

Further possible research questions arise in the application for
data transmission with linear transceivers. While the considerations
in this paper are restricted to the MSE, it would be interesting to see
in addition how achievable rates can be optimized in a system that
transmits improper signals by means of (strictly) linear transceivers.
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