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ABSTRACT 

 
The fast temporal changes of a millimeter wave channel necessitate 
frequent estimation of the channel. Power reduction techniques for 
the channel estimation process for ultra-wideband 5G systems are 
highly desirable. High speed analog-to-digital converters for the 
wideband data conversion and high speed baseband processing of 
the Nyquist rate digital samples are the main contributors to high 
power consumption. This work utilizes the subsequence properties 
of Zadoff Chu sequences and presents a training based channel 
estimation algorithm that can operate at a fraction of the symbol 
rate and thus save power. The algorithm also provides a framework 
for tradeoff between channel estimation performance and 
computational complexity. This can allow a receiver to go into 
power saving mode during high signal to noise ratio channel 
estimation. Our analysis and simulation results show that our sub-
Nyquist based approach achieves maximum likelihood 
performance at full rate sequence for a single path channel model.   
 

Index Terms— Channel estimation, mmWave, pilot design 
 

1. INTRODUCTION 
 
Millimeter wave (mmWave) communications can fulfill the ultra-
high speed data needs of 5G [1]. Estimation of ultra-wide 
bandwidth mmWaves channels is challenged by the inherent 
hardware implementation complexities of mmWave devices [2][3] 
and the high-speed signal processing and data conversion 
requirements of 5G systems. Signal transmissions in such channel 
environments suffer huge propagation and reflection losses, and 
are highly susceptible to blockage. Frequent channel estimation is 
necessary to establish and maintain a reliable communication 
between a base-station (BS) unit and a user-equipment (UE). These 
unfavorable channel characteristics mandate narrow beam 
transmission in mmWaves channel to save power and to reduce 
interference. The small wavelengths of mmWave make narrow 
beam-forming (BF) possible with large-scale antenna arrays [1]–
[3]. Typical transceiver architectures with large-scale antenna 
arrays utilize a low-power power amplifier (PA)/low noise 
amplifier (LNA) per antenna and a pair of high-speed digital-to-
analog (DAC)/analog-to-digital (ADC) circuits per RF chain [4]. 
Power consumption and cost of the DAC/ADC circuits dominate 
the ultra-wideband mmWave transceiver design challenges. The 
baseband implementation of high-speed data sampling can also be 
difficult to balance in terms of power, complexity, performance, 
and cost. The high speed processing of the conventional channel 
estimator adds higher power consumption at the baseband 
hardware implementation.  
 Power-saving solutions using one-bit or low resolution A/D-
converters [5] received a lot of attention in the research 
community. Various channel estimation algorithms based on 1-bit 
or sub-resolution ADC’s have been researched [6]–[9]. These 
techniques operate on high-speed (above Nyquist rate), low 
resolution data samples.  There has also been research utilizing 
compressed sensing based algorithms on sparse channel models 

[10]–[13]. These methods reduce the number of pilot signals and 
optimally place them in multi-carrier transmissions in order to 
improve spectral efficiency. There has been limited research on 
sub-Nyquist based channel estimation algorithms. In [14], a sub-
Nyquist based channel estimation solution is described for IEEE 
802.11ad links. In this approach, subsampling is achieved using 
sampler designs in hardware. In [15], estimation of delay and 
doppler shifts with sub-Nyquist sampling is described. In this work 
sub-sampling is achieved by jointly optimizing analog transmit and 
receive filters. Prior research attempts to reduce power 
consumptions using low-resolution or sub-Nyquist sampler 
designs.  

In this paper, we address the channel estimation problem for 
ultra wide-band mmWave communication channels by developing 
a novel approach that reduces power consumption via subsampling 
of the received signal itself. Sub-Nyquist sampling without 
additional hardware modification is made possible with the design 
of a pilot signal. The channel is assumed to have a single path 
between the transmitter and the receiver.  

Our algorithm utilizes a pilot signal’s subsequence properties 
and develops an algorithm that is capable of processing the 
subsequences of the received pilot signal in parallel at a much 
lower clock speed than the Nyquist rate. Processing a smaller block 
of decimated data at a time also reduces the complexity of the 
algorithm. Lastly, the proposed algorithm can estimate the channel 
from a sub-Nyquist sampled signal by trading off performance 
with ADC sampling speed. This mode of operation can allow the 
receiving device to go in a power saving mode when the received 
signal to noise ratios are high and acceptable channel estimations 
can still be achieved when the ADC samples the pilot signal at a 
fraction of the Nyquist rate.  

In the rest of the paper we develop a maximum likelihood 
(ML) estimation of the given channel model in section 2, the 
proposed algorithm is presented in section 3 followed by 
simulation results in section 4 and conclusions in section 5. This 
paper uses lower and upper case bold letters for vector and matrix 
notations. Transpose, Hermitian, and modulo n are represented by 
(.)T, (.)H, and ((.))n respectively.  
 
2. MMWAVE CHANNEL MODEL AND ML ESTIMATION 

 
We assume that the communication between two devices in 
mmWave channels happens in a single narrow-beam path between 
the transmitter and the receiver as shown below: 

y(t) =α p(t −τ )+w(t)  
Here, y(t), p(t), and w(t) are the received signal, pilot signal, and 
additive noise at time t respectively. The propagation gain is α . 
Our understanding of the mmWave propagation channel model is 
based on measurements and studies done on mmWave bands [16]–
[18]. The delay spread in mmWave for a typical indoor line-of-
sight (LOS) scenario ranges from 4 to 11ns. For a GHz bandwidth 
system, this is equivalent to a duration of less than 12 symbols. 
Applying beamforming can further contain the delay spread to 
0.5ns for LOS scenarios and 5ns for non-line-of-sight (NLOS) 
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scenarios, which corresponds to 1 and 5 symbol-durations in a 
GHz bandwidth system respectively. Delay spread numbers for 
mmWave are much smaller than conventional cellular 
communication systems in the lower frequency bands. These 
smaller delay spreads found in mmWave propagation together with 
beamforming technology makes a mmWave channel an ideal 
candidate for being modeled mathematically as a sparse channel. A 
single path communication may appear simplistic, but it is 
applicable to many 5G scenarios as described below: 
1) During the initial acquisition (IA) process, the UE receiver, 

most likely limited by analog beamforming, scans all 
directions to search for downlink (DL) pilot transmission. The 
reference pilot signal to assist in the BF process is also 
transmitted on a beam to cover sufficient range of 
transmission. Analog BF at the receiver end has the added 
benefit of rejecting all signals coming outside the steered 
direction. The rejected signals can be from other interferers or 
other multipath components from the same BS. The DL pilot 
signal received during this scan process, using analog BF at 
UE can be modeled as a single path channel model. The IA 
process is a complex and lengthy process adding overhead 
and draining power from the device. Latency and power 
reduction during this process is a crucial problem to solve for 
5G mmWave communications.  

2) After beamforming i.e., the aligning of angle-of-arrival (AoA) 
and angle-of-departure (AoD), a single narrow beam signal 
path survives at the UE receiver. This is a valid and quite 
common scenario for DL transmission in 5G mmWaves 
communication. Further, power conservation at the UE device 
is more critical compared to that at the BS ends. Our approach 
of reducing power consumption using algorithms aided by 
pilot design is very much applicable for DL narrow beam 
transmissions.  

3) For higher frequency band communications, such as 90GHz 
bands, the channel is mostly LOS on a single narrow-beam 
path. For this scenario our channel model is valid for both UL 
and DL transmissions regardless of analog, digital or hybrid 
BF capabilities at the receivers. 
 

2.1. Maximum-likelihood estimator for the given channel 
model: 
In this subsection we formulate an ML channel estimation for the 
above channel model. The received signal is sampled at symbol 
timing and the delay in the channel can be resolved by symbol 
delays. The received signal at symbol timing can be expressed as 
follows: 

y[n]=α p[n−τ ]+w[n], n = 0,L−1.  
Here, y[n] , p[n] , and w[n]  are the received signal, pilot signal 
and additive noise samples at the nth symbol time respectively. The 
noise is zero mean additive white Gaussian noise (AWGN). The 
integer symbol delay is τ , the complex gain of the transmitted 
pilot at the receiver is α , and the symbol duration of the pilot 
signal is L. 

For the ML method to estimate the dominant path, the 
problem becomes much simpler if the different delays of the pilot 
signal are uncorrelated to each other over the delay spread of the 
channel. Therefore, we assume that the transmitted pilot sequence 
is designed to have perfect circular autocorrelation properties. A 
cyclic prefix of duration greater than the maximum channel delay 
is appended to the pilot sequence so that reduced complexity 
frequency domain circular correlation can be applied. Due to this 
zero circular correlation property all of the circular shifted 

sequences of the pilot sequences form an orthogonal basis for the L 
dimensional subspace. Let us define the L dimensional τ  circular 
shifted pilot sequence pτ , received signal samples y, and the 
additive noise w, in vector notations as: 

pτ = p[τ ] ! p[L−1] p[0] ! p[τ −1]⎡
⎣

⎤
⎦
T

y = y[0] ! y[L−1]⎡
⎣

⎤
⎦
T

w = w[0] ! w[L−1]⎡
⎣

⎤
⎦
T
.

 

Assuming unit norm for the pilot vectors, pτ , the following unitary 
matrix can form an ortho-normal basis for the L dimensional 
subspace: 

U = p0 ! pL−1⎡
⎣

⎤
⎦= Up Up

⎡
⎣

⎤
⎦.  

The matrices Up and Up are defined below: 

Up = p0 ! pm−1⎡
⎣

⎤
⎦

Up = pm ! pL−1⎡
⎣

⎤
⎦.

 

 In the above equation m is a known parameter representing the 
maximum delay of the channel and it is also the symbol duration of 
the cyclic prefix. In vector notation the received signal can be 
written as follows: 

y =αpτ +w.  
Multiplying both sides of the above equation by U, or equivalently, 
performing circular correlation with the pilot sequence yields: 

h = h[0] ! h[L−1]⎡
⎣

⎤
⎦
T
=UHy =αeτ +U

Hw.
      (1)

 

The statistical properties of the additive noise, UHw, in the above 
equation remain the same and eτ  represents the τ th column of the 
L-dimensional identity matrix.  
From this transformed received vector the ML estimate of the 
channel can be shown to be: 

τ̂ML = argmaxn∈{0,!,m−1} h[n] ,
α̂ML = h[τ̂ML ].                          (2) 

Our goal is to come up with an algorithm that is comparable 
to ML estimates and is yet capable of processing subsamples of the 
pilot signal in parallel. In our problem formulation we design a 
pilot signal that has an additional cyclic prefix whose length is 
greater than the delay spread of the channel. This allows us to 
focus our attention on circular auto-correlation and cross-
correlation properties of the subsequences instead of linear 
correlation properties. That is, each decimated subsequence of the 
pilot must have good auto correlation property over the delay 
spread of the channel and the cross-correlation among the 
decimated sequences with different phase shifts must be low.  

In the next section, we formulate a pilot assisted channel 
estimation algorithm using the afore-mentioned channel model. 
 

3. SUB-SAMPLE BASED CHANNEL ESTIMATION  
 

For our channel estimation algorithm we have chosen Zadoff-Chu 
(ZC) pilot sequence for its subsequence properties shown in [19]. 
ZC sequence is a constant amplitude zero auto-correlation  
(CAZAC) sequence. In addition to having perfect circular auto-
correlation properties it also has a constant amplitude (polyphase 
sequence). This property allows a power saving power amplifier 
design, making it an attractive choice for wireless communication 
systems. In 4G LTE, ZC sequences are used extensively for 
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synchronization and channel estimation purposes [20], [21]. More 
details on the ZC sequences can be found in [22], [23]. 

The ZC sequence s[n]  of length L and root u is defined as: 

s[n]= e
−
iπun2

L , for L  even 

e
−
iπun(n+1)

L , for L  odd 

"

#
$

%
$

 

In this paper we represent this sequence by ZC(u,L). The root of 
the sequence u  is relative prime to L . These sequences are 
periodic with a periodicity of . It is easily seen that when these 
sequences are conjugated or scaled by a complex constant they 
preserve the constant amplitude, zero circular correlation 
(CAZAC) properties. Further, it is shown in [22] that adding a 
frequency offset by multiplying the sequences with the sequence 

e
i2πq
L

n
,n = 0,!,L −1 , where q  is any integer, maintains the 

CAZAC sequence properties.  
In [19], we prove that ZC sequences of length, L = ND2, 

where N and D are any positive integer pair, when decimated by D, 
demonstrate the following desirable properties: 
1) All D subsequences have zero circular cross-correlations 

among themselves.  
2) The circular auto-correlation of each of the sub-sequences is 

non-zero at every N lag. Further, the magnitude of the non-
zero entries of the circular auto-correlation have a constant 
amplitude and a linear phase drift. 

These properties are preserved in the circularly shifted ZC 
sequences as well. Let us define the decimated subsequence of a 
ZC sequence delayed by an integer 𝜏 and with the jth phase offset, 
where j = 0,1,…,D-1, as: 

s j ,τ [k]= s[ j −τ +Dk],k = 0,!,ND−1  
This expression can be simplified to separate out the constant 
phase term, the linear phase term and the linear frequency term 
respectively, for k=0,…,ND-1, as follows: 

s j ,τ [k]=

e
−iπu( j−τ )2

ND2 e
−i2πu( j−τ )

ND
k
e
−iπuk2

N , N  even, D even/odd 

e
−iπu( j−τ )( j−τ+1)

ND2 e
−i2πu( j−τ+D

2
)

ND
k
e
−iπuk (k+1)

N , N  odd, D even

e
−iπ ( j−τ )( j−τ+1)

ND2 e
−i2πu( j−τ+(D+1)

2
)

ND
k
e
−iπuk (k+1)

N , N  odd, D odd.

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 

The third term is ZC(u,N) repeated D times and it neither 
depends on the phase of the subsequences nor the delay in the 
channel. This term can be removed from the received signal vector 
by multiplying each sample by the complex conjugate of the 
ZC(u,N) sequence. This operation does not change any statistical 
properties of the AWGN because of the constant amplitude 
property of the ZC sequence. 

The remaining term of the jth subsequence is a complex 

sinusoid. The discrete frequency ω j ,τ =
2π
ND

k j ,τ  and the phase ϕ j ,τ  of 

the sinusoidal term of the jth subsequence is given below: 

k j ,τ =

−u( j −τ )( )( )ND , N  even, D even/odd 

−u( j −τ + D
2

)
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
ND

, N  odd, D even

−u( j −τ + (D+1)
2

)
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
ND

, N  odd, D odd

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 

ϕ j ,τ =

−πu( j −τ )2

L
, N  even

−πu( j −τ )( j −τ +1)
L

, N  odd.

⎧

⎨
⎪⎪

⎩
⎪
⎪

                                  

From the above expressions it is evident that, for each subsequence 
there is one-to-one mapping of the discrete frequency, 
ω j ,τ , τ = 0,!,ND−1  to the channel delay, τ ∈ 0,!,ND−1{ } . This 

is because the ZC root u is relative prime to ND. 
Consequently, after removing the ZC(u,N) term the problem 

of estimating the channel model parameters becomes a single 
sinusoidal parameter estimation problem for each received 
subsequence. The ML estimate of the single sinusoid can be 
achieved by taking ND-point DFT of each of the subsequences. 
The one-to-one mapping of the DFT frequency index, k j ,τ  to delay 
τ  produces the impulse response of the channel with a phase 
rotation given by ϕ j ,τ  for each subsequence j = 0,!,D−1 . After 
removing the phase rotations, the peak of the channel response 
corresponds to the gain in the channel and the corresponding delay 
is the integer delay in the channel. The variances of the additive 
noise in the impulse responses from the subsequences can be 
reduced by a factor of D by averaging all of the D subsequences. 
Note that the channel estimation can be independently performed 
from each subsequence, therefore, channel estimation from sub-
Nyquist sampling is possible. Following is a block diagram of the 
channel estimation algorithm using all D subsequences of the 
received ZC pilot sequence. 

 

 

Figure 1. Block diagram of sub-sample based algorithm 

In the diagram the received signal is the ZC(u,L) with 
AWGN as follows: 

y[n]=α 1
L
s[n−τ ]+w[n], n = 0,L−1.

                  (3) 
 
3.1. A comparison with the ML estimation: 

With the selection of the pilot sequence in (3), the ML 
estimate of the channel is given by (2) where, 

L

y[n]

z−(D−1)

⊗ ⊗

freq.	index	to	delay	
mapping,	 To[k]

↓D ↓D

ND−DFT ND−DFT

freq.	index	to	delay	
mapping,	 TD−1[k]

⊗ ⊗
1
D∑

α̂ = havg[τ̂ ]

e−iϕ0,τ e−iϕD−1,τho[τ ] hD−1[τ ]

ZC[u,N ]*

yo[n]

xo[n]

yD−1[n]

xD−1[n]

Xo[k] XD−1[k]

j = D−1j = 0

havg τ[ ]

τ̂ = arg max
τ∈ 0,...,ND−1⎡⎣ ⎤⎦

havg (τ )
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pτ =
1
L
s[τ ] ! s[L−1] s[0] ! s[τ −1]⎡

⎣
⎤
⎦
T

. 

In our algorithm, after preprocessing the jth subsequence of the 

received pilot signal, the vector, h j = hj[0] ! hj[ND−1]⎡
⎣

⎤
⎦
T

 has the 

same parametric model of the channel as in (1), except that the 
magnitude at the delay is scaled by a factor of 1 D . This is 

because the signal content of x j = x j[0] ! x j[ND−1]
⎡
⎣

⎤
⎦
T

 is a 

complex sinusoid with gain α L  and after ND point DFT the 

gain at the corresponding frequency becomes α ND L =α D . 
The IID (independent and identical) Gaussian noise statistics are 
unaltered by the multiplication of constant amplitude ZC(u,N) 
sequence, the phase rotation operation, the DFT and the frequency 
index to delay mapping operation. The averaging process of all the 
D vectors scales the additive noise’s standard deviation in 

havg = havg[0] ! havg[ND−1]⎡
⎣

⎤
⎦
T

 by a factor of 1 D . Therefore, the 

parametric model of the channel of our method becomes identical 
to (1). This concludes the proof that applying the ML estimation on 
the transformed vector havg  yields the ML estimates for the 
original channel estimation problem.  
The computational complexity in ML estimation in (2) applying 
frequency domain circular correlation includes: 

• L point DFT of the received L dimensional vector. 
• Element wise complex multiplications of L-point-DFT 

with the DFT of the ZC(u,L) sequence.  
• L-point IDFT. 
• Processing clock at symbol rate. 

The computational complexity in our approach is as follows: 
• D ND-point DFTs. 
• 2D element wise complex multiplications of ND-

dimensional vectors. These computations reduce by a 
factor of 2 when N = 1, because ZC(u,1) = 1.  

• Processing clock at 1/Dth of the symbol rate. 
In the next section we display the simulation results using 

this algorithm that demonstrate that the algorithm is comparable to 
the ML estimates of the given channel model. 
 

4. SIMULATION RESULTS 
 
The pilot signal is a Zadoff-Chu sequence with a length L = 1024 = 
ND2, where decimation factor is D = 16, and the root u = 11. The 
propagation channel is known to have a maximum delay spread of, 
τmax = 64 . The estimation is considered erroneous when the 
estimated delay differs from the actual delay in the channel. Error 
rates are calculated using 2000 Monte-Carlo simulation runs for 
each signal to noise ratio (SNR) level and channel delay. A 
theoretical error rate versus SNR is computed using (2) and 
numerically computing the distribution of |h(n)|, n=1, ..., m-1, for 
each SNR value. 

The following figure plots the error rate in delay estimation 
for our proposed method (red-line in bottom plot), error rate in 
delay estimation for ML estimator (red-line in top plot, as in 
equation (2)) and the theoretical error rate for an ML estimator 
(black-line in both plots). As seen in Figure 2, the error rate for 
both ML and our sub-sample based methods estimates closely 
matches the theoretical results. Hence, the simulation result 
confirms our theoretical assessments. 

 
Figure 2. Error rate vs SNR 

5. CONCLUSION 
 
In this paper we propose a low complexity channel estimation 
algorithm that utilizes pilot sequence structure to reduce power 
consumption in ultra-wideband mmWave communication systems. 
The mmWave channel is assumed to have an integer symbol delay 
and the range of possible delays in the channel is a known 
parameter. The pilot signal is a Zadoff-Chu sequence, whose 
length, L is any multiple of D2. Subsequences of such pilot 
sequences that are decimated by a factor D have very special 
circular correlation properties. The analysis and simulation results 
show that our channel estimation method is equivalent to an ML 
estimation for the given channel model. The main contributions of 
the algorithm are: 1) the capability to process the D decimated 
received samples independently, thus reducing implementation 
complexity, processing time, and energy consumption in the 
channel estimation process; 2) the ability to reduce the ADC speed 
to a fraction of the symbol rate and perform channel estimation 
with a reduced performance.  

In summary, we have developed a method that can achieve 
an ML performance for a single path channel model that saves 
power using sub-sampling of sequences. This work lays the 
foundation for estimating more complex channel models such as 
those with multipath components with fractional delays. 
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