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ABSTRACT
We present a closed form solution to the problem of registra-
tion and detection of dense 3-D point clouds undergoing un-
known rigid deformations. The solution is obtained by adapt-
ing the general framework of the universal manifold embed-
ding (UME) to the case where the deformations the object
may undergo are rigid. The UME nonlinearly maps functions
(e.g. , images, 3D models) related by geometric transforma-
tions of coordinates to the same linear subspace of some Eu-
clidean space. Therefore registration, matching and classi-
fication are solved as linear problems in a lower dimensional
space. In this paper we extend the UME framework to the spe-
cial case where it is a-priori known that the geometric trans-
formations are rigid (e.g. pose change of a 3-D rigid object).
We further demonstrate the applicability of the methodology
for the registration of 3-D point clouds. In the case where
point correspondences are unknown, the majority of existing
methods for registering 3-D point clouds are based on iter-
atively finding a transformation which minimizes some dis-
tance between the object and a model. The method proposed
in this paper is notably different as registration is performed
using a closed form solution that employs the UME low di-
mensional representation of the shapes to be registered.

Index Terms— Affine Transformation, Rigid Transfor-
mation, Registration, Parameter Estimation.

1. INTRODUCTION

Registration of point cloud measurements of rigid 3D objects
has been an active research subject with suggested solutions
ranging from closed form solutions to iterative and numeri-
cal solutions. Applications for such registration techniques
are vast, from problems in computer vision, robotics and nav-
igation, to medical imagery and instruments. With the ad-
vancement in recent years of highly accurate dense 3D recon-
struction from monocular cameras [1, 2, 3] and the increas-
ing availability of cameras acquiring range data, the potential
applications of such techniques have grown even larger. 3-
D shape registration can be categorized into global and local
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solutions. Global solutions aim at aligning two or more data
sets while taking the complete available data sets into account
while local solutions are based on extracting and matching
key points in order to find point correspondences.

Global approaches utilize all the available data so poten-
tially they may achieve better results, but they also tend to
suffer greatly when observed shapes are incomplete or when
only a partial overlap is available. On the other hand, local
solutions are robust in terms of data incompleteness and par-
tial overlaps, but utilize less data and are prone to correspon-
dence errors and key-point inaccuracies. The majority of ex-
isting global solutions is of iterative nature, where a distance
function is defined from points in the observation either to
assumed correspondence points in the model [4, 5] or to the
surface of the model [4, 6, 7]. They then iteratively find a
transformation which minimize this distance. The Iterative
Closest Point algorithm (ICP) [4, 5] is by far the most widely
used algorithm. The ICP algorithm constructs point corre-
spondences based on spatial proximity followed by a regis-
tration step (e.g. [8]). By definition, the ICP and other iter-
ative methods (e.g. [6, 7]) rely on a good initial alignment,
otherwise registration may converge to a local minimum. The
method proposed in this paper is notably different as registra-
tion is performed using a closed form solution that employs
the UME low dimensional representation of the shapes to be
registered.

More specifically, in this paper we show that enforcing a
rigid deformation constraint on the Universal Manifold Em-
bedding (UME) [9], derived for the case where the geometric
transformation is affine, results in accurate and computation-
ally efficient closed form solution to the problem of registra-
tion of 3-D point clouds. Moreover, the presented method is
independent of the initial pose of the point clouds and data
sampling rates. Since the UME low dimensional representa-
tion is also independent of the data dimensions it can handle
very large data sets, which is a major limitation for existing
iterative methods. When only partial overlap is available, an
hierarchical search is employed in order to jointly detect the
object and estimate the transformation it undergoes relative
to the larger reference model, as presented in section 4. In
the presented example we demonstrate the applicability of the
method in the framework of 3-D surface registration where a
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3-D point cloud obtained using multiview 3-D reconstruction
is registered to a known reference model. The results are com-
pared to the results achieved by the ICP algorithm. The rest
of this paper is structured as follows. In section 2 a brief tech-
nical background required for the derivation of the proposed
solution is provided. In section 3 the derivation of the UME
for the special case of a rigid deformation is presented and in
section 4 experimental results are provided.

2. BACKGROUND

Next we briefly review the two methodologies that form the
basis of the framework presented in this paper. These are the
UME [9] and the closed form solution for registration of point
clouds from known correspondences, [10].

2.1. Closed form solution for registration of point clouds
from known correspondences

In [8, 10] a closed form solution for the problem of recover-
ing the transformation between two sets of points in different
Cartesian coordinate systems is derived. More specifically,

rr,i = sRrl,i + r0, i = 1, ..., n (1)

where {rr,i}ni=1 is the “right hand” (or reference) set of points
mapped to the “left hand” (or observed) set of points {rl,i}ni=1

by a transformation defined by s, R and r0. The goal then is
to find R, r0 and s such that we minimize

n∑
i=1

||ei||2 =

n∑
i=1

||rr,i − sRrl,i − r0||2 (2)

In [10] it is shown that the translation r0 that minimizes
the sum of squared errors is the difference between the
centroid of {rr,i}ni=1 and the rotated centroid of {rl,i}ni=1,

i.e. r0 = 1
n

n∑
i=1

rr,i− 1
nR

n∑
i=1

rr,i. The rotation that minimizes

the sum of squared errors is shown to be the matrix maximiz-

ing tr{RTM}, where M =
n∑

i=1

r′r,i, r
′T
l,i (here r′r,i, r

′
l,i

represent the centered version of rr,i, rl,i). M is shown to
have a decomposition M = US where U = M(MTM)−1/2

is a unitary matrix and S is a semi positive definite matrix.
It is then shown by analyzing the eigenvalues of the matrix
M that R = U is the matrix minimizing the sum of squared
errors.

2.2. The UME - Universal Manifold Embedding

In this section we briefly review the principles of the UME
[9] for observations related by an affine transformation. Let
O be the space of observations. Let Φ be the group of affine
transformations, and let S be a set of known objects. Every
observation is the result of applying a geometric deformation

φ ∈ Φ to an object g ∈ S. The parameters of the affine trans-
formation completely specify the action of the group of ge-
ometric transformations the object may undergo. We denote
by Sg ∈ O the set of all possible observations on an object g.
Thus, Sg is the orbit of g under Φ.

The universal manifold embedding is a map T : O → H
from the space of observations into a low dimensional Eu-
clidean space, H , such that the set T (Sg) is a linear subspace
of H for any g. Thus, the UME reduces the dimension of any
problem concerning the multiplicity of appearances of objects
from the high dimensional space of observationsO to the low
dimensional linear space H and allows for the usage of clas-
sical linear theory in the face of a highly non-linear problem.

Next, the mapping T is described. Consider the case
where h(x), g(x) are observations on the same object related
by an affine transformation, i.e.

h(x) = g(Ax + c) ,A ∈ GL(n), c,x ∈ Rn (3)

Let y = Ax + c, x = A−1y + b where b = −A−1c. Let
y′ = [1, y1, ..., yn]T then x = Dy′ where D =

[
b; A−1

]
is

an n× n+ 1 matrix.
Also, let P ∈ N and let wl, l = 1, . . . , P be a set of

bounded, Lebesgue measurable functions wl : R → R. By a
change of variables we obtain the following identities:∫

Rn

wl ◦ h(x)dx =
∣∣A−1∣∣ ∫

Rn

wl ◦ g(y)dy (4)

∫
Rn

xwl ◦ h(x)dx =
∣∣A−1∣∣ ∫

Rn

(Dy′)wl ◦ g(y′)dy (5)

Let f be some observation on a deformable object and let

T(f) =


∫
Rn

w1 ◦ f(y)
∫
Rn

y1w1 ◦ f(y) . . .
∫
R2

ynw1 ◦ f(y)

...∫
Rn

wP ◦ f(y)
∫
Rn

y1wP ◦ f(y) . . .
∫
R2

ynwP ◦ f(y)

 (6)

Let D′ = [e1; DT ], where e1 = [1 0 ...0]T , be the matrix rep-
resentation of an affine transformation in homogeneous coor-
dinates. Rewriting (4), (5) for l = 1, . . . , P in a matrix form,
we have:

T(g)D′
∣∣A−1∣∣ = T(h) . (7)

To find the matrix D′ (and thus recover the parameters of the
affine transformation) we notice that (7) is in fact an over de-
termined linear equation system. Hence, the least squares so-
lution for D′ is given by

D′ = |A| [T(g)TT(g)]−1T(g)TT(h) (8)

3. THE UME FOR RIGID TRANSFORMATIONS

In the following, we assume that O is the space of all n-
dimensional functions from Rn to R. As an example one may
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consider a 3D topographical models where the 3D surface is
described by specifying the height of each point, i.e. , as a
function from R2 to R. Assuming further that the objects un-
dergo rigid geometric transformations of coordinates, Φ be-
comes the special Euclidean group in n dimensions, SE(n).
(We note that in Section 4, we demonstrate the applicability of
the proposed solution for the registration of such 3D surfaces
undergoing rigid geometric deformations).

Since SE(n) is a subgroup of the affine group, the map-
ping T : O → H in (6) is still valid. The coordinate trans-
formation however is now different. As the geometric trans-
formation is assumed to be rigid, the matrix A becomes an
orthonormal matrix with determinant of 1, i.e. a rotation ma-
trix. Let us denote this rotation matrix by R. In this special
case of a rigid deformation, D′ will be denoted by D′(R, c)
to specify the transformation parameters and to distinguish
the notation from the one used in the case of affine transfor-
mations. Thus (7) is rewritten in the following form:

T(g)D′(R, c) = T(h) (9)

Thus, (9) establishes the basic relation of the Rigid Trans-
formation UME (RT-UME). Clearly, a solution for D′(R, c)
cannot be found by applying the least squares solution given
in (8), as there is no restriction on the solution to provide a
rigid transformation. We next show that by enforcing the rigid
motion constraints in formalizing the least squares estimate
of D′(R, c) in (8), the solution is obtained along similar lines
to the ones employed in [10]:

Define the error matrix E = T(g)D′(R, c) − T(h). Let
Ei denote the i-th row of E. Thus,

Ei =


∫
Rn

wi ◦ h(x)−
∫
Rn

wi ◦ g(y)∫
Rn

xwi ◦ h(x)−RT
∫
Rn

ywi ◦ g(y)− b
∫
Rn

wi ◦ g(y)

T

(10)
and

||Ei||2 =

∥∥∥∥∥∥
∫
Rn

wi ◦ h(x)−
∫
Rn

wi ◦ g(y)

∥∥∥∥∥∥
2

+

+

∥∥∥∥∥∥
∫
Rn

xwi◦h(x)−RT

∫
Rn

ywi◦g(y)− b

∫
R2

wi◦g(y)

∥∥∥∥∥∥
2

(11)

The first term is independent of the deformation parameters,
therefore it is enough to minimize the sum over the second
term. Define gi =

∫
Rn

yTwi ◦ g(y), hi =
∫
Rn

xTwi ◦h(x) and

mi =
∫
Rn

wi ◦ g(y). Minimizing the sum of squared errors

(11) for all i = 1, . . . , P is equivalent to minimizing

P∑
i=1

∥∥hi − giR− bTmi

∥∥2 (12)

This minimization is the same as the minimization problem
(2) solved in [10], with the exception that the translation term
is multiplied by the mass coefficients mi. The property of
the translation being identical for all i in (2) is critical in the
procedure of solving (2) in [10]. However, following [8], (12)
can be rewritten as a weighted sum of squared errors,

P∑
i=1

m2
i

∥∥∥∥ hi

mi
− gi

mi
R− bT

∥∥∥∥2 (13)

which is then solved for the desired R and b using the proce-
dure described next.

3.1. Finding the Translation

Define the weighted centroid of hi and gi i.e.

h′i =
hi

mi
−
∑P

j=1mjhj∑P
j=1m

2
j

, g′i =
gi

mi
−
∑P

j=1mjgj∑P
j=1m

2
j

(14)

In addition, define

b′ = bT −
∑P

j=1mjhj∑P
j=1m

2
j

+

∑P
j=1mjgj∑P
j=1m

2
j

R (15)

Using these definitions, the sum in (13) can be written as

P∑
i=1

m2
i ‖h′i − g′iR− b′‖2 (16)

Following similar lines to [10] it can be shown that b′ = 0
minimizes (16). Therefore, substituting b′ = 0 into (15) we
have

b =

[∑P
j=1mjhj∑P
j=1m

2
j

−
∑P

j=1mjgj∑P
j=1m

2
j

R

]T
(17)

3.2. Estimating the Rotation

In order for R to minimize (13) , it is required to maximize

P∑
i=1

m2
ih
′
iR

Tg′Ti = tr{R
P∑
i=1

m2
ih
′T
i g′i} (18)

Define M =
P∑
i=1

m2
ih
′T
i g′i. Rewriting the definition of M in

a matrix form, we have: M = HTWG where W is a P ×
P diagonal weight matrix with the i-th term on the diagonal
beingm2

i . Note that M is a square matrix. Since every square
matrix can be decomposed to a positive-semi definite matrix
S and a unitary matrix U such that M = US where

S = (MMT )1/2, U = M(MTM)−1/2 (19)

it follows that R = UT is the matrix maximizing tr{RM}
and thus

R = (MTM)−1/2MT (20)

is the sought after rotation matrix.
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4. EXPERIMENTAL RESULTS

In this section we demonstrate the applicability of the reg-
istration method derived using the RT-UME to the problem
of registration of 3-D point clouds, representing 3-D surfaces
having only partial overlap, where the overlap regions differ
by unknown rigid transformation and sampling rates. In this
example the point clouds are actual 3-D terrain models.

Fig. 1. Example of reference 3-D terrain model and a gener-
ated observation

In the presented experiment the RT-UME is used to accu-
rately and efficiently register a terrain patch model (observa-
tion) to a larger area 3-D point cloud model (see, Fig. 1) by
jointly segmenting the corresponding patch out of the larger
3-D reference model and aligning the observation to this patch
such that (13) is minimized. The localization is done in two
consecutive steps: First a search is conducted over a rough
grid, and then over a finer grid in proximity to the minimum
point of the rougher grid search. In this experiment the trans-
formation the observation undergoes is a 3-D rigid transfor-
mation. The problem is reduced to a 2D problem by attaching
local reference axes to the observation and the patch at each
point of the grid search. This was done by using principal
component analysis to find the axis with least variability in
the observation and reference independently and treating it as
the Z axis at both. In Fig. 2 the MSE surface is shown over
the search grid. It is shown that its minimum is obtained at
the correct point (marked by ”x”).

In addition, the performance of the proposed RT-UME in
estimating the rigid transformation parameters, is compared
to that of the ICP algorithm. In this experiment the ICP is
initialized with the ground truth transformation, but as can be
concluded from Fig. 3 (a) and Fig. 3 (b) it yields larger es-
timation errors than the RT-UME. It is therefore concluded
that in comparison with the ICP algorithm, the RT-UME pro-
vides higher accuracy at a considerably lower computational
complexity (as the UME operator is of a linear computational

complexity).

Fig. 2. MSE surface: ”o” depict the results for the rough
grid; ”+” depict the results for the second stage fine grid. The
correct position of the patch within the larger reference model
is marked by ”x”.

(a) (b)

Fig. 3. (a) Translation error distribution of the ICP vs. the
RT-UME. (b) Rotation error (solid angle error) distribution of
the ICP vs. the RT-UME

5. CONCLUSIONS

We have presented a closed form solution to the problem of
registration and detection of dense 3-D point clouds under-
going unknown rigid deformations. The solution is obtained
by adapting the general framework of the universal manifold
embedding (UME) to the case where the deformations the ob-
ject may undergo are known to be rigid. Thus, the proposed
solution does not require the knowledge of point correspon-
dences, nor an accurate initial registration. We have further
demonstrated the applicability of the methodology for the task
of registering 3-D point clouds, showing better performance
than the commonly used ICP algorithm.
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