
ESTIMATING THE NUMBER OF CORRELATED COMPONENTS BASED ON RANDOM
PROJECTIONS

Christian Lameiro, Tanuj Hasija, Tim Marrinan, and Peter J. Schreier

Signal and System Theory Group, Universität Paderborn, Germany, http://sst.upb.de

ABSTRACT

Estimating the number of correlated components between two
data sets is a challenging task in the case of small sample sup-
port. Typically, a rank-reduction preprocessing step based on
principal component analysis (PCA) is carried out on each
data set individually to reduce the dimensionality before an-
alyzing correlation between the data sets. However, PCA re-
tains the components with the largest variance within a data
set, and therefore fails when these components are not the
ones that account for the correlation between the data sets.
To overcome this, we propose an alternative technique that,
instead of projecting the data into a single subspace, uses a
large number of random projections.

Index Terms— Correlation analysis, small sample sup-
port, random projection, KL divergence.

1. INTRODUCTION

We consider the problem of estimating the number of corre-
lated components between two data sets. This is a common
problem in different areas such as biomedicine [1], climate
science [2], and array processing [3]. It becomes very chal-
lenging when the number of available samples is small com-
pared to the dimension of the data sets. This setting is called
small sample support and is a common scenario in practice.

Correlation can be assessed by canonical correlation anal-
ysis (CCA) [4]. In CCA, each data set is linearly transformed
into canonical variables, which represent the underlying cor-
relation structure. Specifically, the ith pair of canonical vari-
ables exhibit the highest correlation under the constraint of
being uncorrelated with the previous i − 1 canonical vari-
ables. The correlations between the canonical variables are
the canonical correlations. These correlations have to be es-
timated from samples, which is the main challenge in case of
small sample support: When the number of samples is small,
the sample canonical correlations highly overestimate the true
ones [5]. This can be overcome by a dimensionality-reduction
preprocessing step, but how this reduction is achieved has a
strong influence on the performance of the scheme. A typi-
cal rank-reduction technique is principal component analysis
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(PCA) [6, 7]. In [6] white noise is assumed, and the num-
ber of components kept by PCA is chosen independently of
the CCA step. Colored noise is allowed by the techniques
in [7], where the PCA and CCA ranks are jointly obtained,
providing very good results for a wide variety of scenarios.
However, PCA is in general not the optimal rank-reduction
approach for this problem. First, PCA retains the components
with largest variance in the observed data, which do not nec-
essarily correspond to the correlated components. Second,
the signal subspace estimated by PCA may leak into the esti-
mated noise subspace due to the small number of samples and
colored noise [8].

Alternatives to PCA have also been studied in the past. In
[9], diagonal loading together with results from random ma-
trix theory are applied. However, the proposed approach only
identifies whether or not the data sets are correlated, and it
does not estimate the number of correlated signals. In [10,11]
techniques based on cross-validation (CV) and sparse CCA
(SCCA), respectively, are proposed as alternatives to PCA-
based approaches. Even though these techniques can over-
come some of the issues associated with PCA, they still have
some limitations as pointed out in [10, 11]. For example, the
CV techniques [10] are more sensitive to the variance of the
independent components, while SCCA [11] is computation-
ally demanding. In this paper we propose a new technique
that overcomes some of these limitations. The proposed ap-
proach is based on projecting the data into a large number
of random low-dimensional subspaces. Canonical correlation
analysis is then applied to each of these reduced-rank repre-
sentations and the model order is selected by combining the
information extracted from each subspace. There is, how-
ever, no free lunch, as the proposed approach is computation-
ally more demanding and requires higher signal-to-noise ratio
(SNR) than the techniques in [7].

2. PROBLEM STATEMENT

We consider the two channel model

x = Axsx + nx , y = Aysy + ny (1)

In the above model, Ax ∈ Rn×(d+fx) and Ay ∈ Rm×(d+fy)

are the deterministic but unknown mixing matrices, where d
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is the number of components correlated between the two data
sets, and fx and fy are the unknown number of independent
components in channel x and y, respectively. The sources sx
and sy are Gaussian with cross-covariance matrix Rsxsy =
diag (ρ1σx,1σy,1, . . . , ρdσx,dσy,d, 0, . . . , 0), where |ρi| ≤ 1
is the correlation coefficient between the ith signal pair, and
σ2
x,i and σ2

y,i are the corresponding variances. The additive
noise terms nx and ny are independent and Gaussian with
arbitrary and unknown covariance matrices. In this setting,
we are interested in the following problem.

Problem: Given M independent and identically dis-
tributed (i.i.d.) samples from model (1), with M possibly of
the order of the data dimensions n, m, determine the number
d of correlated components.

3. REVIEW OF CCA

The correlation between x and y can be assessed by the
canonical correlations. These can be obtained by the sin-
gular value decomposition (SVD) of the coherence matrix,
C = R

−1/2
xx RxyR

−1/2
yy , where Rxx, Ryy , and Rxy are the

covariance and cross-covariance matrices, respectively. Let
X ∈ Rn×M and Y ∈ Rm×M be the matrices containing the
observations from each channel. The sample canonical corre-
lations are given by the SVD of the sample coherence matrix,
which is obtained by replacing Rxx, Rxy , and Ryy with their
sample counterparts. These sample canonical correlations
can then be used to estimate the number d of correlated com-
ponents, provided M is large compared to m and n, which
is typically carried out by hypothesis testing (HT) [12] or
information-theoretic criteria (ITC) [13, 14].

In the case of small sample support, the sample canon-
ical correlations significantly overestimate the true correla-
tions and, hence, cannot be directly used to infer the number
of correlated components (see [5, 7] for further details). This
is typically overcome by representing the data in some low-
dimensional subspace, but a new problem arises: What is the
optimal subspace? The typical approach is PCA, whereby the
data is projected onto the dominant eigenvectors of the sam-
ple covariance matrices. CCA can then be performed on these
low-rank descriptions. However, as explained earlier, PCA is
not the optimal dimensionality reduction, since the compo-
nents retained this way are not necessarily the ones that ac-
count for the correlation between the data sets.

4. PROPOSED APPROACH

4.1. Main idea

For a given rank r, suppose that we choose random projec-
tions. The reduced-rank description of X and Y in these ran-
dom subspaces is

X̃ = PTX , Ỹ = QTY (2)

where P ∈ Rn×r and Q ∈ Rm×r are each an orthonormal
basis of some r-dimensional subspaces. To solve our prob-
lem, we will consider as test statistic t the largest sample
canonical correlation between X̃ and Ỹ that is due to noise.
Let us also assume that we are able to determine its probabil-
ity density function, denoted as fd(t) (notice its dependence
on the number d of correlated components). We could then
obtain a trivial estimator of d by placing a threshold on the
sample canonical correlations below which components are
deemed to be due to noise. However, the performance of such
an estimator would strongly depend on the random projectors
P and Q: If P and Q do not sufficiently overlap with the
correlated-signal subspaces, it will not be possible to separate
these from spurious correlations.

Alternatively, by regarding the projectors P and Q as ran-
dom matrices, the sample canonical correlations between X̃
and Ỹ, given the observations X and Y, will follow a certain
distribution. Let fs(t|X,Y) be the conditional distribution
of t given the observations X and Y, and assuming that the
number of correlated components is s. That is, fs(t|X,Y)
is the conditional distribution of the (s + 1)th largest sam-
ple canonical correlation, which coincides with the largest
noise sample canonical correlation when s = d. Notice that
E[fs(t|X,Y)] = fd(t) for s = d, where the expectation
is taken over X and Y. Let fs(t) be the distribution of the
statistic assuming the number of correlated components d is
equal to s. The main idea is that for r > d, fs(t|X,Y) will
generally be closer to fs(t) when s = d than when s 6= d.
The value of d can then be determined by evaluating which of
the observed sample canonical correlations follows its corre-
sponding target distribution fs(t) most closely.

To this end, the conditional distribution fs(t|X,Y) is re-
quired, which seems impossible to obtain analytically. Nev-
ertheless, we can obtain this distribution empirically by using
many random projections. That is, for each random projec-
tion we obtain rank-reduced descriptions as in (2) along with
a set of sample canonical correlations. Repeating this proce-
dure for many random projections, an empirical distribution
for each of the sample canonical correlations can be obtained.

The proposed framework can be summarized as follows.

1. For a given rank r, we perform L random projections
and obtain L r-dimensional descriptions of X and Y
following (2). The random projectors are uniformly
drawn from the r-dimensional Grassmann manifold.

2. For s = 0, . . . , r − 1, we obtain our statistic t as the
(s + 1)th largest sample canonical correlation on each
rank-reduced description. This way, we obtain L obser-
vations of t, i.e., t1, . . . , tL, from which we empirically
obtain fs(t|X,Y).

3. The number d of correlated components is then es-
timated as the value of s for which the empirically-
determined distribution of the statistic most closely
follows its corresponding target distribution fs(t).
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Fig. 1: True and approximated distributions of the statistic
under the null hypothesis M = 100.

In the above procedure there are still some questions that need
to be answered: How can we evaluate how close the sam-
ples of the statistic follow the target distribution? How do we
choose the rank r? How can we obtain the target distribution,
i.e., the distribution of the largest noise sample canonical cor-
relation? We address these questions in the next subsections.

4.2. Measuring the closeness to the target distribution

We first address the question how to assess the similarity be-
tween the distribution of the observed statistic and the target
distribution. The closeness of two distributions can be mea-
sured by the J-divergence [15, 16], which is a symmetrized
version of the Kullback-Leibler (KL) divergence. Specifi-
cally, the J-divergence between the distributions f1(x) and
f2(x) is defined as

J = D (f1(x)||f2(x)) +D (f2(x)||f1(x)) , (3)

where D (fi(x)||fj(x)) is the KL divergence from fi(x) to
fj(x). For a given rank r we then proceed as follows. For
s = 0, . . . , r − 1, we obtain the J-divergence between the
conditional and target distributions, fs(t|X,Y) and fs(t), re-
spectively. We then select the number of correlated compo-
nents as the value of s for which the J-divergence is minimum.
In order to compute the J-divergence, we estimate the KL di-
vergence using the algorithm proposed in [17].

Let us now focus on the question how to choose the rank
r. This is a difficult task since the optimal rank depends in
general on the true number of correlated components, which
is precisely what we want to estimate. If r < d, part of the
signal subspace is completely lost after the projections. Even
if r is greater than d but not sufficiently greater than d, it may
happen that the random projections do not keep enough sig-
nal variance for some components. This makes the observed
distribution of their corresponding sample canonical correla-
tions similar to that of the noise, and hence they cannot be
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Fig. 2: Performance results for the first scenario.

detected. Finally, if r is too large compared to the number of
samples M , the distribution of the observed sample canoni-
cal correlations corresponding to the correlated components
will also be similar to those of the noise. To overcome these
issues, we propose to estimate d for different ranks, that is,
r = 1, . . . , rmax, and then choose our estimate by majority
voting among the different ranks. We assume d < 0.3M and
set the maximum rank as rmax = min(b0.3Mc,min(n,m))
[18], so that rmax is small compared to M .

4.3. Distribution of the target statistic

In order to apply the proposed approach, we need to deter-
mine the distribution fs(t) of the statistic, i.e., the distribution
of the (s+1)th largest sample canonical correlation when the
number d of correlated components is equal to s. This dis-
tribution is, however, unknown. Nevertheless, the noise sam-
ple canonical correlations are asymptotically independent of
any model parameter other than the dimension and number of
samples [19]. Therefore, their distribution can be estimated
offline by running a large number of Monte-Carlo simula-
tions. Following these lines, we obtained the distribution of
the statistic by generating 1000 data sets following the model
(1), with dimension n = m, d correlated components with
unit variance and unit correlation coefficients, fx = fy = 0,
and white noise with unit variance. This is performed offline
for d = 0, . . . , n− 1 and different values of n and M .

In order to illustrate the closeness of the approximation,
we depict in Fig. 1 the approximated distribution obtained by
the aforementioned procedure, and the true distribution ob-
tained by Monte-Carlo simulations using the exact parame-
ters of the scenario. These are the following: n = m = 10,
fx = fy = 4 uncorrelated components with variance 3, and
two different number of correlated components, namely, d =
2 and d = 6, in both cases with variance 5 and correlation co-
efficients equally spaced in the interval [0.7, 0.9]. The noise is
spatially colored, obtained by filtering white noise with vari-
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Fig. 3: Performance results for the second scenario. Refer to
the legend of Fig. 2 for the meaning of the markers.

ance 1 with a moving-average (MA) filter with coefficients
1√
3
[1, 1, 1]. The estimated probability density functions are

depicted in Fig. 1 for d = 2 and d = 6, where we observe
that the approximate distributions closely follow the true dis-
tributions regardless of the model parameters.

5. NUMERICAL EXAMPLES

We generate the observations according to the two-channel
model in (1), with each entry of the mixing matrices being
independently drawn from a zero-mean Gaussian distribution
with unit variance. We compare our techniques with the fol-
lowing competitors: Detector 1 and 3 from [7], which are
based on PCA-CCA; CV technique from [10], and informa-
tive CCA (ICCA) from [6], also based on PCA-CCA.

We first consider the following scenario: n = m = 150,
fx = fy = 15 uncorrelated components with variance 5, and
d = 10 correlated signals with variance 5 and correlation co-
efficients equally spaced in the interval [0.75, 0.95]. The noise
is spatially colored, obtained by filtering white noise with
variance 1 with an MA filter with coefficients 1√

3
[1, 1, 1]. The

probability of correctly detecting the exact number of corre-
lated components is shown in Fig. 2. Except for very small
number of samples (M ≤ 100), where all the techniques per-
form poorly, the proposed approach outperforms the compet-
ing ones in this scenario.

The effect of a large number of uncorrelated components
is further illustrated in Fig. 3, which shows the detection per-
formance in a scenario with varying number of independent
components. We consider: n = m = 80, M = 60, uncorre-
lated components with variance 5, and d = 5 correlated com-
ponents with variance 5 and correlation coefficients equally
spaced in the interval [0.7, 0.95]. The noise is colored follow-
ing the same model as in the previous scenario. As the number
of uncorrelated signals increases, the performance of all tech-
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Fig. 4: Performance results for the third scenario. Refer to
the legend of Fig. 2 for the meaning of the markers.

niques decreases, but we observe that the proposed approach
exhibits a lower decrease in detection probability. This cor-
roborates the suitability of the proposed technique for scenar-
ios where there is a strong presence of uncorrelated signals.

Finally, we would like to point out that the proposed tech-
niques require larger SNR than, e.g., the techniques proposed
in [7]. This is because part of the signal variance is lost
when the data is projected into a random subspace. This ef-
fect is illustrated in Fig. 4. For this scenario, we consider
unitary mixing matrices, so as to have better control over
the SNR. The parameters are the following: n = m = 50,
M = 100 samples, no uncorrelated components, d = 3 cor-
related signals with variance 10 and correlation coefficients
[0.7, 0.825, 0.95]. The noise is white and we vary its vari-
ance from 0.1 to 1.5. While the performance of the compet-
ing techniques remains approximately constant, the proposed
approach experiences a degradation in the detection perfor-
mance. Nevertheless, in light of the simulation results, we can
conclude that this is a promising approach. When the SNR is
sufficiently large, the proposed technique can achieve better
performance than existing ones when there is a high number
of uncorrelated components with large variance. Overcoming
the issues observed at low SNR and reducing the computa-
tional cost are interesting lines of further work.

6. CONCLUSIONS

We have proposed a new technique to estimate the number
of correlated components between two high-dimensional data
sets. As opposed to existing techniques, which find a sin-
gle projection, the proposed technique projects the data onto
a large number of random low-dimensional subspaces. Our
simulations show that the proposed approach can outperform
existing techniques in the presence of a large number of un-
correlated components with high variance.
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