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ABSTRACT

In this paper, we first propose to analyze the properties of
the Kullback-Leibler divergence between wide-sense station-
ary random processes that can be modeled by ARMA or
ARFIMA processes. This study makes it possible to intro-
duce a new feature useful to compare two random processes
and called ”the asymptotic KL increment”. The latter depends
on various parameters such as the inverse filters associated to
the random processes. An interpretation of ”the asymptotic
KL increment” is also given. Then, we propose to use it in
order to compare the inter-beat intervals, which characterize
the cardiac rhythm, when the subjects are either in a calm and
soothing situation or under stress.

Index Terms— Kullback-Leibler divergence, asymptotic
analysis, experiment-induced stress.

1. INTRODUCTION

Various works have been done on process comparison and
statistical change detection. One of the authors recently fo-
cused his attention on the Jeffreys divergence (JD), which
is the symmetric version of the Kullback-Leibler (KL) di-
vergence, between the joint distributions of k consecutive
samples of zero-mean autoregressive fractionally integrated
with moving average process (ARFIMA) processes1 [12] [11]
[6] [13] [7] [18]. The analysis of the increment of the JD,
i.e. the difference between two JDs computed for k + 1 and
k successive variates, when k increases, can be summarized
as follows: after a transient behavior, the JD increment tends
to a finite value called ”asymptotic JD increment”, except
when the ARFIMA processes have different unit zeros and/or
when the difference between the differencing orders of the
ARFIMA processes is larger than 1

2 . In these particular cases,
the limit of the increment tends to infinity. The asymptotic
JD increment between zero-mean ARFIMA processes can be
interpreted as follows: It consists in calculating the power of
the first process filtered by the so-called inverse filter associ-
ated with the second one, and conversely. This explains the
atypical cases where the asymptotic JD increments tend to
infinity.

1Note that an ARMA process with orders (p, q) corresponds to an
ARFIMA process with orders (p, q) and a differencing order d equal to 0.

Nevertheless, the authors were asked about the expression
of the asymptotic JD increment when dealing with non-zero
mean processes. In addition, some colleagues wondered
whether the behavior of the KL was similar since there is an
additional term depending on the logarithm of the determi-
nants of the covariance matrices of the processes. Finally, this
approach was only used with synthetic data. For the above
three reasons, our contribution in this paper is twofold:
1/ we propose to analyze the KL divergence between the joint
distributions of k consecutive samples of random processes,
which are non necessarily zero-mean and the PSD of which is
continuous and can be null for a finite number of frequencies.
In addition, the processes can be short or long memory. An
analytical expression of the asymptotic KL increment is also
provided by using the partial correlation coefficients (PACF)
of the processes.
2/ we suggest considering the asymptotic KL increment
to compare inter-beat intervals (i.e. RR-intervals). These
biomarkers are usually useful to analyze the heart rate vari-
ability. In this paper, they are recorded during experiments
the purpose of which is to analyze the experiment-induced
stress and its effect on the cardiac autonomic nervous system.
It should be noted that this work is done within a multi-
disciplinary project gathering psychologists, physiologists
and researchers working in the field of signal processing.
The remainder of this paper is organized as follows: In sec-
tion 2, some statistical properties of ARMA and ARFIMA
processes are recalled. In section 3, a theoretical analysis of
the evolution of the KL shows that the asymptotic KL incre-
ment can be of interest to compare different processes with
respect to a reference process. In section 4, this approach is
respectively used to illustrate the theory with synthetic data
and to analyze inter-beats intervals recorded from Polar H10
heart rate belts in order to evaluate the experiment-induced
stress effects on the cardiac autonomic nervous system. It is
used with some traditional measures that are considered by
the physiologists such as the root mean square of successive
differences (RMSSD) [15], the ratio of powers in low and
high frequencies [15], the multi-scale entropy (MSE) [4], the
detrended fluctuations analysis (DFA) [17] and the detrended
moving average method (DMA) [1].
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2. ABOUT ARMA AND ARFIMA PROCESSES

The wide-sense stationary (w.s.s.) ARMA process xk can
be seen as the output of a linear filter whose input uk is a
white noise process with variance σ2

u and whose transfer func-
tion denoted as H(z) is rational. In addition, as the corre-
lation function, rτ with τ the lag, geometrically decays to
zero,

∑
rτ is absolutely summable and this process is a short-

memory process. In various applications such as economics,
the values of the correlation function tend to decay to zero
at a slower rate. This leads to long-memory processes for
which

∑
rτ is no longer finite. This family includes the AR

fractionally integrated MA (ARFIMA) processes [16]. Let us
define it from the z-transforms of the process itself and the
driving process:

X(z) =

∏q
l=1 (1− zlz−1)∏p

l=1 (1− plz−1)(1− z−1)d
U(z) = H(z)U(z)

(1)
where {pl}l=1,...,p are the non-unit poles and {zl}l=1,...,q are
the zeros. In addition, the differencing order d plays a role
on the high-lag correlation structure. When (p, q) = (0, 0),
this leads to fractionally integrated FI(d) white noise. When
d > 1

2 , the process is non-stationary and has an infinite vari-
ance. If 0 < d < 1

2 , it exhibits long memory or persistence,
whereas it has intermediate memory when − 1

2 < d < 0.
Finally, let us define the inverse filter. When all the zeros are
inside the unit-circle in the z-plane, H(z) is minimum-phase
and directly invertible. However, when a zero has its modulus
larger than 1, the following transformation can be considered:

Hzl(z) = (1− zlz−1) = −z∗l H−1
bla,zl

(z)

(
1− 1

z∗l
z−1

)
(2)

where z∗l is the conjugate of zl, Hbla,zl(z) =
z−1−z∗l
1−zlz−1 is a

Blaschke product [3] up to a multiplicative value of the form
±ejφl with φl the argument of zl. (2) amounts to saying that
Hzl(z) can be expressed as the product of three transfer func-
tions which correspond to two all-pass filters with gains re-
spectively equal to |zl| and 1 and a minimum-phase filter.
Note that the gain |zl| could be rather incorporated in the char-
acterization of the filter input, by multiplying the variance of
the driving process by Kl = |zl|2. This remark will be useful
in subsection B. 2). Therefore, the BIBO-stable inverse filter
is defined as follows:

H−1(z) =
1

σu

p∏
l=1

(1− plz−1)(1− z−1)d
q∏
l=1

H−1
zl (z) (3)

with

H−1
zl (z) =

{ 1
1−zlz−1 if |zl| < 1

1
−zl∗

1

1− 1
z∗
l
z−1 if |zl| > 1 (4)

In this section, the driving process, and consequently the pro-
cess, was assumed to be zero-mean. However, in practice, the
processes are not necessarily zero-mean and can correspond
to the sum of a constant and a zero-mean ARFIMA process.
Therefore, in the next section, we suggest comparing non-
zero mean Gaussian random processes by using the KL.

3. ABOUT KULLBACK-LEIBLER DIVERGENCE

Let us first recall that the probability distribution function
(pdf) of the ith real random Gaussian vector of size k, mean
µk,i and covariance matrix Qk,i, is defined by:

pi(Xk,i) =
1

(
√

2π)k|Qk,i|1/2
× (5)

exp
(
− 1

2
[Xk,i − µk,i]TQ−1

k,i [Xk,i − µk,i]
)

with Xk,i the column vector storing k first values of the ith
process and |Qk,i| the determinant of the covariance matrix.
To study the dissimilarities between two pdfs [10], the KL
divergence is given by:

KL
(1,2)
k =

∫
x1:k

p1(x1:k) ln

(
p1(x1:k)

p2(x1:k)

)
dx1:k (6)

Let Tr(.) be the trace. By substituting the pdfs by (5), it can
be shown that the KL satisfies:

KL
(1,2)
k =

1

2

[
Tr(Q−1

k,2Qk,1)− k − ln
|Qk,1|
|Qk,2|

(7)

+ Tr(Q−1
k,2(µk,2 − µk,1)(µk,2 − µk,1)T )

]
Several issues can occur when the divergences are used in
practice. Among the questions that can be considered, one
can wonder which value of k must be chosen. In the follow-
ing, our purpose is to see how to address this problem. More
particularly, let us study the expression ofKL(1,2)

k , especially
when k increases. We will see that the increment of the KL,
i.e. ∆KL

(1,2)
k = KL

(1,2)
k+1 − KL

(1,2)
k , tends to a constant in

most of the cases. Therefore, using the so-called asymptotic
increment of the KL is of interest. Given (7) and introducing
∆µk = µk,2 − µk,1, one has:

∆KL
(1,2)
k =

1

2

(
Tr(Q−1

k+1,2Qk+1,1)− Tr(Q−1
k,2Qk,1)− 1

)
(8)

+
1

2

(
Tr
(
Q−1
k+1,2∆µk+1∆µTk+1

)
− Tr

(
Q−1
k,2∆µk∆µTk

))
− 1

2
ln
( |Qk+1,1|
|Qk,1|

|Qk,2|
|Qk+1,2|

)

The above expression (8) consists of three terms we analyze
in the remainder of the section. Let us express the correlation
matrices by using their eigenvalues and eigenvectors, with i =
1, 2:

Qk,i = E
[
Xk,iX

T
k,i

]
= Pk,iDk,iP

T
k,i (9)

where Pk,i denotes the unitary matrix storing the k eigenvec-
tors of Qk,i and Dk,i is the diagonal matrix defined with the
k non-null real positive eigenvalues.
Pre-multiplying Xk,1 by D

−1/2
k,1 PT1 consists in whitening

the process vector. As the process is assumed to be w.s.s.
and when k tends to infinity, this amounts to filtering all the
samples stored in Xk,1 by the inverse filter defined by the
transfer function H−11 (z). Similarly, pre-multiplying Xk,1

by D
−1/2
k,2 PTk,2 amounts to filtering the vector Xk,1 by the

inverse filter H−12 (z). Therefore, the limit of the first term in
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(8) can be expressed as a function of the power P (1,2) of the
1st process filtered by H−12 (z) as follows:

lim
k→+∞

1

2

(
Tr(Q−1

k+1,2Qk+1,1)− Tr(Q−1
k,2Qk,1)− 1

)
(10)

=
1

2
(P (1,2) − 1)

For the second term in (8), as the processes are w.s.s., their
means are constant and the vectors µk,1 and µk,2 store k times
the same value µ1 and µ2 respectively. Therefore, one has:

lim
k→+∞

1

2

(
Tr
(
Q−1
k+1,2∆µk+1∆µTk+1

)
− Tr

(
Q−1
k,2∆µk∆µTk

))
(11)

=
(µ1 − µ2)2

2
|H−1

2 (z)|2z=0

Let us now look at third term in (8). Taking into account
the link between the covariance matrices and the normalized-
covariance matrices, i.e. Ck+1,i = 1

r0,i
Qk+1,i for i = 1, 2,

one has:
|Qk+1,1||Qk,2|
|Qk,1||Qk+1,2|

=
r0,1
r0,2

|Ck+1,1|
|Ck,1|

|Ck,2|
|Ck+1,2|

(12)

However, the determinant of the normalized-covariance ma-
trices can be expressed from the PACF2 φτ,i with i = 1, 2:

|Ck+1,i| = |Ck,i|
k∏
τ=1

(1− φ2
τ,i) (13)

Depending on the random processes under study, the PACF
can become equal to 0 or not. Indeed, for a pth-order AR
process, the PACFs are equal to 0 for τ > p and non-zero for
the other positive values. When dealing with MA processes,
the PACF are all non-null since the MA processes can be seen
as AR(∞) processes. They however tend to zero when the
lag τ tends to infinity. Thus, for a MA(1) process, it can be
shown that φτ,i can be expressed from the MA parameter b1,i:

φτ,i =
(−1)τ+1bτ1,i

1 + b21,i + b41,i + ...+ b2τ1,i
(14)

Concerning a FI process, the PACF depend on the differenc-
ing order di and are equal to di

τ−di [16]. More generally, for
a w.s.s. ARFIMA process with 0 < di <

1
2 , they are approx-

imately equal to di
τ when τ tends to infinity [9]. Therefore,

whatever the type of process, the limit of the ratio between
the determinants of the covariance matrices tends to a con-
stant denoted Li:

lim
k→+∞

|Ck+1,i|
|Ck,i|

= lim
k→+∞

k∏
τ=1

(1− φ2
τ,i) = Li = Cte (15)

As the squares of the reflexion coefficients and the PACF are
necessarily equal, one can use the way the variance of the

2After expressing the ith process at times k and k− τ as linear combina-
tions of the τ values xk−1,i, .., xk−τ+1,i and their residuals, the PACF φτ,i
is defined as the correlation coefficient computed between both residuals. Its
modulus is hence necessarily in the interval [0, 1]. Up to a multiplication by
±1, the PACF corresponds to the reflexion coefficient.

driving process is updated with the Durbin-Levinson algo-
rithm [14] to express the constant Li from the variance of
the driving process of the ith process. Indeed, one has:

lim
k→+∞

r0,i

k∏
τ=1

(1− φ2
τ,i) = Lir0,i = σ2

u,i

qi∏
l=1

Kl,i (16)

with Kl,i = 1 when the zero zl,i of the ith process is inside
the unit circle and Kl,i = |zl,i|2 when it is outside the unit-
circle. This difference between both cases is due to (2).
Therefore, there is necessarily a finite limit for |Qk+1,1||Qk,2|

|Qk,1||Qk+1,2|
when k increases. Using (12), (15) and (16), one has:

lim
k→+∞

|Qk+1,1||Qk,2|
|Qk,1||Qk+1,2|

=
σ2
u,1

∏q1
l=1Kl,1

σ2
u,2

∏q2
l=1Kl,2

(17)

Given (10), (11), (12) and (17), the asymptotic KL increment
satisfies:

∆KL(1,2) = lim
k→+∞

∆KL
(1,2)
k =

1

2
(P (1,2) − 1) (18)

+
(µ1 − µ2)2

2
|H−1

2 (z)|2z=0 −
1

2
ln
σ2
u,1

∏q1
l=1Kl,1

σ2
u,2

∏q2
l=1Kl,2

For short-memory processes like ARMA processes, the only
reason for which this asymptotic increment could not be fi-
nite is the fact that the transfer function associated to the
second process has a zero on a unit-circle in the z-plane that
is not shared with the transfer function associated to the first
process. For FI and ARFIMA processes, there may be other
reasons: if the modulus of the difference between two dif-
ferencing orders is larger than 1

2 , the process that is obtained
after inverse filtering has an infinite power.
Remark: Jeffreys divergence (JD) is defined as 1

2 (KL
(1,2)
k +

KL
(2,1)
k ). Using (18), the expression of the asymptotic JD in-

crement for zero-mean processes used in [7] can be retrieved.

4. ILLUSTRATIONS

4.1. With synthetic data

Let us compare two MA processes whose orders are respec-
tively equal to 4 and 6. The zeros are set to 2, −1/3 and
0.9e±jπ/3 for the first and 2, −1/5, 0.5e±jπ/4 and 3e±jπ/5

for the second. The variances are equal to 1.
The asymptotic KL increment is estimated using a realization
of each process based on N = 10000 samples as follows: the
covariance matrices and the means are estimated by using a
maximum-likelihood estimator for different sizes k in an in-
terval kmin and kmax defined by the practitioner. Then, the
increments are computed. Due to the convergence to (18),
the differences between two consecutive increments tend to
zero. Therefore, once these differences are smaller than a pre-
defined threshold, the KL increments are averaged to get an
estimation of the asymptotic KL increment. Fig. 1 confirms
that the KL increment converges to the limit defined in (18).
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Fig. 1: Illustration confirming the theoretical analysis

4.2. Analyzing RR intervals to study experiment-induced
stress

Several studies show that the cognitive tasks and the stress in-
duced by the experiment involves the central nervous system.
Studies using RR intervals have been recently led to analyze
the interconnections between cardiac regulations and central
nervous system [2] [5] [20]. Therefore, we developed a psy-
chological protocol aiming at inducing several levels of stress
during a cognitive task. The levels of experiment-induced
stress and workload were controlled with questionnaires vali-
dated in psychology [8] [19].
Four situations were considered for this experiment, during
which the subjects were seated in front of a computer in a
room at 20◦C between 10 am and noon in order to limit the
effects of chronobiology: a reference situation (Ref ), a situ-
ation of cognitive tasks (Tc), and two situations of cognitive
tasks associated to an experiment-induced stress: a small level
of stress (Tc+S1) and a high one (Tc+S2). During Ref , the
subjects watched a calm and soothing documentary during 10
min. Then, during the three other situations, the subjects had
to remain silent and 23, 28 and 31 questions of logic, memo-
rization and mental calculation were asked. During Tc + S1

and Tc + S2, negative visual feedbacks appeared in false re-
sponses to amplify the experiment-induced stress. Both situa-
tions differed in the following manner: during Tc+S1, all the
questions had to be completed in a limited time of 7 minutes.
During Tc+S2, each question was displayed for a predefined
time, not controllable by the subject. Two people were near
the subject and behave as an attentive and evaluative audi-
ence. Sound disturbances were also added.
There were 25 subjects (12 women and 13 men, 27.8 ± 7.8
years). Each protocol took 1.5 hour.
Cardiac autonomic markers were assessed from recorded RR
intervals for 7 to 10 min, depending on the experimental situ-
ations, by using a Polar H10 belt associated by Bluetooth with
the application HRV Logger.
Usually, RMSSD [15], the ratio of powers in low and high fre-
quency (LF/HF ) [15] are considered. The MSE is also com-
puted by using [4]. In addition, the Hurst exponent, denoted
as H , which characterizes the degree of long-range depen-
dence, is estimated by using the DFA [17]. It operates with
the following steps: the signal is first integrated and split into

segments. Local trends are deduced. The resulting piecewise
linear trend is subtracted to the whole signal. The power of
the residual is computed for different segment lengths. Then,
the log-log representation corresponds to a straight line with
a slope, denoted as α. Due to the integration of the signal, the
slope is not directly equal to H but is equal to H + 1. As the
trend of a process can be estimated with different manners,
variants exist. Thus, for the DMA, the global trend is de-
duced by means of a finite-impulse response (FIR) low-pass
filter. See [1].
As the asymptotic KL increment is computed between the RR
intervals in the different situations and the one in Ref , we
suggest computing the difference between the RMSSD, the
LF/HF ratio, the MSE, the long-range DFA and the DMA es-
timated in the different situations and the ones obtained in
Ref . They are denoted δRMSSD, etc. Their means and
their standard deviations (std) based on the 25 subjects are
given in Table 1. The stds are comparatively large since the
physiological regulations depend on the individual character-
istics. This is common in this type of experiment. Neverthe-
less, the evolutions of the features from Tc to Tc+S2 for each
subject are similar to the evolution of the mean.
Table 1: Different features. RMSSD(Ref) = 39 ± 18
ms, LF/HF(Ref) = 1.1 ± 0.6, DFA(Ref) = 0.84 ± 0.17,
DMA(Ref) = 0.84± 0.16 and MSE(Ref) = 3.74± 0.61.

Features Ref Tc Tc + S1 Tc + S2

δRMSSD 0 9 ±12 6 ±11 7 ±11
δLF/HF 0 0.14 ±0.34 0.20 ±0.40 0.13 ±0.38

δDFA 0 0.03 ±0.17 -0.02±0.17 0.09 ±0.24
δDMA 0 0.02±0.16 -0.03±0.15 0.09 ±0.22

δMSE 0 0.32 ±0.59 0.33 ±0.53 0.22 ±0.65

∆KL 0 0.23 ±0.19 0.22 ±0.16 0.28 ±0.27

Given Table 1, RMSSD and the ratio LF/HF are not able
to distinguish the high level of stress Tc + S2 from the other
situations. However, the ratio LF/HF could be relevant to
discriminate Tc + S1 from Tc. This could be explained by
the fact that these features are known to be related to the
sympatho-vagal balance [15]. δMSE, δDMA and δDFA
make it possible to point out the high level of stress Tc + S2.
The regularity of the RR intervals is probably modified due
to the stress. Like δMSE, δDMA and δDFA, ∆KL also
allow Tc + S2 to be distinguished from the others.
Therefore, the ratio LF/HF and one of these three features
could be combined to describe the different physiological and
psychological states.

5. CONCLUSIONS AND PERSPECTIVES
The asymptotic KL increment can be used to compare random
processes. It is also of interest to characterize a high level of
stress. We plan to combine it with the standard features in
order to classify subjects within a group in a crisis situation.
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