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ABSTRACT
We propose the maximum a posteriori accelerated orthogonal least-
squares (MAP-AOLS) algorithm, a novel greedy scheme for accu-
rate reconstruction of a sparse binary signal from its compressed
measurements. The algorithm leverages the distributions of the sens-
ing matrix, signal, and noise to find a support set that is optimal in
the maximum a posteriori (MAP) sense. This stands in contrast to
existing greedy orthogonal least squares (OLS) methods that per-
form reconstruction without fully exploiting all the available statis-
tical information. In each iteration of the proposed algorithm, the
distributions of the sensing matrix, noise, and signal with respect to
the support set are used to identify and select the column of the sens-
ing matrix with the largest likelihood ratio of the alternate and null
hypotheses. Our extensive simulations demonstrate superiority of
MAP-AOLS over existing greedy algorithms with only a minor in-
crease in computational costs. Moreover, the proposed scheme has
significantly lower computational complexity than traditional OLS.

Index Terms— Compressed sensing, maximum a posteriori es-
timation, orthogonal least-squares, greedy algorithm

1. INTRODUCTION

The problem of estimating sparse signals from their compressed
measurements is encountered in many areas, including compressive
sensing [1, 2], sparse channel estimation [3], and compressed DNA
microarrays [4], to name a few. To formalize it, assume a linear
measurement model of the form

y = Ax + v, (1)

where y ∈ Rn denotes the vector of measurements, A ∈ Rn×m is
the sensing matrix (n < m), x ∈ Rm denotes the sparse signal and
v ∈ Rn is the measurement noise. The problem of reconstructing x
can be formulated as an `0-minimization problem [5, 6]

min
x
||x||0 s.t. ||y −Ax||2 < ε,

known to be NP-hard; high complexity of finding the exact solution
to the sparse recovery problem has spurred development of several
classes of computationally efficient albeit suboptimal algorithms.
These algorithms can broadly be classified in two categories:

Basis pursuit: Relaxing the `0 norm to an `1 norm enables use
of convex optimization techniques including LASSO [7] and itera-
tive shrinkage-thresholding [8]. Exact recovery guarantees for the
basis pursuit algorithm have been established in both noiseless and
noisy settings [9, 10]. However, implementations of these schemes
via interior-point methods have polynomial complexity of O(m3),
limiting their feasibility in practice. While being faster, formula-
tions based on the fast iterative shrinkage-thresholding algorithm

(FISTA) and alternating direction method of multiplier (ADMM) re-
main computationally costly in large-scale settings.

Greedy algorithms: These schemes are significantly faster than
basis pursuit algorithms, typically terminating in O(K) iterations
where K < n denotes the sparsity level. The most widely used
among greedy methods is orthogonal matching pursuit (OMP) [11],
an algorithm which in each step seeks to identify and add to the sup-
port the column ofA having the largest correlation with the residual.
Numerous modifications to this simple scheme have been proposed,
including gOMP [12] and CoSaMP [2]. An alternative to OMP is
the Orthogonal Least Squares (OLS) algorithm [13]. OLS seeks to
minimize the residual error with each selected column of A and has
been shown to outperform OMP in settings where the columns of
the sensing matrix are non-orthogonal [13], while incurring a minor
increase in computational complexity.

Note that the only side information aforementioned algorithms
utilize is the sparsity level of x. However, in many practical settings
other prior information exists and may potentially be exploited to
improve performance of sparse reconstruction schemes. This obser-
vation motivated development of weighted `1-minimization [14] and
fast Bayesian matching pursuit (FBMP) [15] that incorporate a pri-
ori information about the sparse signal x and the sensing matrix A.
These methods were followed by the maximum a posteriori frame-
work for the OMP algorithm in [1]. However, similar extensions
do not exist for OLS, motivating the framework we outline in the
current paper; given the superior performance of classical OLS over
OMP, one expects that the novel Bayesian OLS would be advanta-
geous over Bayesian OMP.

The paper considers reconstruction of sparse binary signals and
presents an iterative procedure for greedy selection of the columns
of the sensing matrix with the largest log-MAP ratio. To this end, we
employ the accelerated OLS [6] strategy which relies on an iterative
approach to significantly improve the speed of the classical OLS al-
gorithm. Note that, as pointed out in [14], the assumption that the
entries of x are equally likely sparse is not always true. While [14]
attempts to incorporate prior sparsity information via weights as-
signed to the basis pursuit problem, the MAP framework proposed
in the current paper seamlessly incorporates such information in the
form of a prior on x. This paves the way for a natural extension
where x is non-binary, but with elements from a known distribution.

Notation and assumption. We assume the linear measurement
model (1) where the entries of A are independent, identically dis-
tributed Gaussian N (0, 1

n
) and v ∈ Rn is independent Gaussian

noiseN (0, σ2I). It is furhter assumed that the sparsity of the signal
is known to be k � n. We wish to determine the support set I. For
greedy schemes, we shall denote the support set determined in the
kth iteration as Sk.
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2. MAP-AOLS ALGORITHM

In this section, we describe the proposed framework. We first focus
on the case of binary signals with no prior and derive a log-MAP
ratio from the distribution of the sensing matrix. Then we extend
our results to the case where prior support information is available.

2.1. Binary signals

We focus our attention on the specific case of binary signals, i.e.,
xi = 1 for all i ∈ I, and xi = 0 otherwise. The selection criterion
for OLS in the kth iteration can be expressed as [6]

js = argmaxj∈I\Sk−1
y>

P⊥k−1aj

‖P⊥k−1aj‖2
. (2)

For the binary signal, this criterion can equivalently be written as

js = argmaxj∈I\Sk−1
(
∑
i

xia
>
i + v>)

P⊥k−1aj

‖P⊥k−1aj‖2

= argmaxj∈I\Sk−1
(
∑

i/∈Sk−1∪j

xia
>
i + v>)

P⊥k−1aj

‖P⊥k−1aj‖2

+ xj‖P⊥k−1aj‖2,

where the second equality stems from the idempotent property of
projection matrices, i.e., P⊥k−1

2
= P⊥k−1. The modification in the

summation follows from the definition of P⊥k−1. As the distribution
of aj is spherically symmetric, we can rotate P⊥k−1aj to a standard
unit basis vector, e.g., u1. This implies that js has the same distri-
bution as

argmaxj∈I\Sk−1

∑
i/∈Sk−1∪j

xiai(1) + v(1) + xj‖P⊥k−1aj‖2.

Let H0 and H1 denote the hypotheses that xj = 0 and xj = 1,
respectively. Moreover, let us define zkj =

∑
i/∈Sk−1∪j

xiai(1) +

v(1) + xj‖P⊥k−1aj‖2. Therefore,

H0 : zkj =
∑

i∈I\Sk−1

ai(1) + v(1),

and
H1 : zkj =

∑
i∈I\Sk−1

ai(1) + v(1) + ‖P⊥k−1aj‖2.

UnderH0, zkj is simply a sum of independent Gaussian random
variables and thus has a Gaussian distribution with zero mean and
variance σ2

0 = K−(k−1)
n

+ σ2
n, where K denotes the sparsity level

of x. By a similar argument, the conditional distribution of zkj under
H1 is a Gaussian with variance K−k

n
+ σ2

n. The following lemma
specifies the distribution of ‖P⊥k−1aj‖2 needed for the MAP-based
selection.

Lemma 1. The cumulative distribution function ‖P⊥k−1aj‖2 is
given by

F‖P⊥
k−1

aj‖2(x) =
γ(n−k+1

2
, nx2

2
)

Γ(n−k+1
2

)
.

Proof. Let bk−1 = Pk−1aj ∈ Lk−1 where Lk−1 is the subspace
spanned by the columns ofA selected and placed in Sk−1. There ex-
ists an orthonormal set of basis {u1,u2, ...,uk−1} that spans Lk−1.

Let U denote a unitary matrix such that {Uu1, Uu2, ..., Uuk−1} =
{e1, e2, ..., ek−1} where ei denote the standard basis vectors. In-
voking the spherical symmetry of the Gaussian distribution once
again, we note that the distribution of bk−1 is identical to that of
Ubk−1 which is simply the sum of the first (k − 1) elements of aj .
Hence, ‖Pk−1aj‖2 has a scaled chi distribution with k−1 degrees of
freedom. A similar argument can be applied to conclude that ‖aj‖2
has a chi distribution with n degrees of freedom [1]. We obtain the
desired result from the identity ‖P⊥k−1aj‖22 = ‖aj‖22−‖Pk−1aj‖22.
The factor of n in the numerator follows from the fact that each ele-
ment of aj is a Gaussian random variable with variance 1

n
. �

Given the distribution of ‖P⊥k−1aj‖2, we can find the distribu-
tion of zkj underH1 using the law of total expectation. However, this
is analytically intractable. Instead, we observe that

E[‖P⊥k−1aj‖2] =

√
2

n

Γ(n−k+2
2

)

Γ(n−k+1
2

)
.

It can be shown the limit of this mean as n grows large is
√

n−k+1
n

.
This result is useful as in many applications the sparsity level K �
n Hence, we shall approximate the distribution of zkj under H1 as a

Gaussian with mean µk =
√

n−k+1
n

and variance σ2
1 = K−k

n
+σ2

n.
We now proceed to compute the log-MAP ratio as

Λk
j = log

(
P (zkj |xj = 1)

P (zkj |xj = 1

P (xj = 1

P (xj = 0)

)
=

(zkj )2

2σ2
0

−
(zkj − µk)2

2σ2
1

+ log

(
P (xj = 1)

P (xj = 0)

)
=

(zkj )2

2(K−k+1
n

+ σ2
n)
−

(zkj − µk)2

2(K−k
n

+ σ2
n)

+ log

(
P (xj = 1)

P (xj = 0)

)
.

(3)
The last term can be dropped under the assumption that all the in-
dices are equally likely to be part of the support set. Instead of
optimizing (2), the proposed MAP-OLS algorithm at each iteration
greedily selects the column which maximizes the log-MAP ratio (3)
. The remaining steps remain unchanged from the standard OLS al-
gorithm. However, the method implemented in this paper is based
on the accelerated OLS (AOLS) algorithm (see Algorithm 1) which
speeds-up the column selection procedure of standard OLS by iter-
atively computing and updating a set of orthogonal vectors. This
reduces computational complexity from O(Kmn2) to O(Kmn)
by obviating the need to compute the projection P⊥k−1aj for all the
columns of A in every iteration.

The quantity of interest zkj is the `2-norm of the corresponding
qj in Algorithm 1, i.e., ‖q(k)

j ‖2 = zkj . The threshold, ε, provides an
alternate stopping criterion for the algorithm.

2.2. Binary signals with prior support information

In the derivation of the log-MAP ratio [cf. (3)], we made an assump-
tion at the final step that all the support indices are equally likely.
This is a common assumption in literature. However, as suggested
in [12], this may not always hold. Adopting the conventions in [12],
we model the signal x as having indices that form two sets K1 and
K2 with the probability of each element being (independently) non-
zero in the sets taken to be p1 and p2, respectively. The log-MAP ra-
tio provides a natural venue for incorporating this information. How-
ever, in this model we no longer have information about the sparsity
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(a) Exact recovery rate (b) Partial recovery rate (c) Running time

Fig. 1: Performance comparison of different sparse reconstruction schemes on a simulated data from noise-free linear random measurements
with m = 256 and n = 128.

Algorithm 1 Accelerated Orthogonal Least Squares (AOLS)

Input: y, A, K, threshold (ε)
Output: Support SK , signal estimate x̂K

Initialize: i = 0, r0 = y, S0 = φ, t(i)j = aj , qj =
a>j y

a>j aj
aj , ∀j

while ‖ri‖2 > ε and i ≤ K do
Select js corresponding to the largest Λk

j

i← i+ 1
Si = Si−1 ∪ {js}
ui = qjs , ri = ri−1 − ui

tij = ti−1
j −

ti−1
j
>
ui

‖ui‖22
ui

end while
x̂K = A†SKy

(a) noise-free measurements (b) σ2
n = 4.5× 10−3

Fig. 2: Sparse image reconstruction on a sample image from EM-
NIST dataset [16].

level K. Therefore, we propose to use K = |K1|p1 + |K2|p2 as
a proxy for the sparsity level. The strong law of large numbers ren-
ders this a good approximation for large m, which is the regime in
which the sparse recovery problem is usually considered. It is also
noteworthy that a more general model with multiple sets could eas-
ily be adopted with negligible increase in computational complexity.
Under this two-set model, the log-MAP ratio in the kth iteration can
be written as

Λk
j =

(zkj )2

2(K−k+1
n

+ σ2
n)
−

(zkj − µk)2

2(K−k
n

+ σ2
n)

+ log(
p1

1− p1
)1{j∈K1} + log(

p2
1− p2

)1{j∈K2}. (4)

2.3. Connection to OLS

The expression for the log-MAP ratio suggests that the heuristic cri-
terion for index selection in OLS is not optimal in the MAP sense.
However, if σ2

1 = σ2
0 = σ2 and the prior terms are ignored, i.e., all

support indices are equally likely to be non-zero, the log-MAP ratio
simplifies to

Λk
j =

(zkj )2

2σ2
−

(zkj − µk)2

2σ2
=

2zkj µk − µ2
k

2σ2
.

Under this assumption (i.e. σ2
1 = σ2

0 = σ2), the MAP-AOLS selec-
tion criterion coincides with that of OLS. Note, however, that for the
case of binary signals this assumption does not hold. Nonetheless,
σ2
1 ≈ σ2

0 in the low-SNR regime (i.e., when the noise power σ2
n is

large).

3. SIMULATIONS

The performance of the proposed MAP-AOLS algorithm is com-
pared to that of AOLS, OMP [11], MAP-MP [1], and Basis Pursuit
(BP). As is typical of benchmarking tests, BP was implemented us-
ing CVX [17, 18]. The exact recovery rate (ERR) and partial re-
covery rate (PRR) are used as metrics to characterize the accuracy
of support recovery of each algorithm. The average running time
serves as a measure of computational complexity of each algorithm.
These metrics were evaluated by averaging the results over 50 inde-
pendent trials. In each simulation, the sensing matrix A ∈ Rn×m

is randomly generated with its i.i.d. elements drawn from the Gaus-
sian distribution N (0, 1

n
). Threshold ε was set to 10−13 for all the

algorithms.

3.1. Reconstruction of binary signals in absence of noise

Fig. 1(a) and Fig. 1(b) illustrate the ERR and PRR for the recon-
struction from noise-free measurements for m = 256 and n = 128.
For each sparsity level, K support indices are chosen uniformly to
form x. MAP-AOLS and MAP-MP lead to the highest ERR for each
value of K and an even more substantial improvement in the PRR
over other greedy algorithms. The corresponding average running
time comparison in Fig. 1(c) show that MAP-AOLS is only slightly
slower than other greedy algorithms despite being considerably more
accurate.
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(a) ERR, p2 = 0.5p1 (b) PRR, p2 = 0.5p1 (c) ERR, p2 = 2p1 (d) PRR, p2 = 2p1

Fig. 3: Accuracy of support detection with prior information. Support indices were chosen from K1 with probability p1 and K2 with
probability p21, with |K1| = 64, |K2| = 192, m = 256 and n = 128.

(a) ERR, T = 1 (b) ERR, T = 5 (c) PRR, T = 1 (d) PRR, T = 5

Fig. 4: Accuracy of support detection with hybrid dictionaries. Dictionary columns were set as Aj =
bj+tj1

||bj+tj1||2
where tj ∼ U(0, T ) with

m = 256 and n = 128.

3.2. Reconstruction of binary sparse image

Next, we evaluate the performance of the proposed algorithm in
the context of recovering a sparse binary image. A 28 × 28 im-
age from the EMNIST dataset [16] is converted into a binary image
by thresholding it at a pixel value of 150. Then, a 392 × 784 sens-
ing matrix with i.i.d. entries drawn from a Gaussian distribution
N (0, 1

392
) is used to generate 392 linear random measurements. Fi-

nally, sparse recovery is performed separately with both noise-free
and noisy measurements where the entries of the additive noise vec-
tor are assumed to be white Gaussian N (0, 0.0045). A single in-
stance of this reconstruction is displayed in Fig. 2 where it is clear
that MAP-AOLS delivers the best reconstruction performance; sim-
ilar results are obtained in other instances of the task. Note that we
exclude comparison with BP from this experiment due to its high
computational cost.

3.3. Binary signal reconstruction with support prior

We consider the noise-free measurements, and set model parameters
to m = 256 and n = 128. However, we now assume a two-set
model for the support indices where, without a loss of generality,
we select the first |K1| indices to be part of K1 and the remaining
indices to be part ofK2. For the simulations, we have chosen |K1| =
m
4

= 64. To maintain the sparse structure of the signal, we would
like p1|K1| + p2|K2| to be small. The recovery rates for various
combinations of (p1, p2) are shown in Fig 3.

On one hand, small values of p1 lead to small K and the effect
of each “missed” support index is more significant, leading to lower
accuracy. On the other hand, recovery rates deteriorate for higher
values of K. These conflicting effects explain the non-monotonic
property of the observed trends. Despite this phenomenon, the high
values of PRR attained by the greedy algorithms indicate that they

recover most of the support indices. MAP-AOLS and MAP-MP
demonstrate a significant improvement compared to AOLS and
OMP in terms of both ERR and PRR (particularly in terms of the
latter). They further exhibit slower drop-off at higher values of K.

3.4. Recovery with hybrid dictionaries

Finally, we analyze the performance of the algorithms when A is a
hybrid dictionary [19]. Hybrid dictionaries are frequently used to ex-
amine scenarios where the amount of dependencies among columns
of A is large (i.e., matrices with large mutual incoherence proper-
ties). To this end, we set Aj =

bj+tj1

||bj+tj1||2
where tj ∼ U(0, T );

other parameters remain unchanged. Note that T controls the extent
of correlation of the columns ofA; as T increases, the dictionary be-
comes more correlated. Fig 4 indicates that AOLS and MAP-AOLS
are significantly more robust with respect to correlation in A com-
pared to other greedy schemes.

4. CONCLUSION

We proposed a MAP framework for recovery of binary sparse signals
which builds upon the OLS algorithm to enable identification of the
support that is optimal in the MAP sense. The proposed algorithm
was compared to AOLS, OMP, MAP-MP and BP in both noise-free
and noisy settings; the results demonstrate that MAP-AOLS out-
performs competing greedy schemes in both scenarios. The MAP-
AOLS algorithm further exhibits superior performance when recon-
structing sparse signals with non-uniform support.

The presented analysis is restricted to binary signals and could
be extended to signals with active elements from known distribu-
tions. It is of interest to pursue techniques for further reduction of
the computational complexity.
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