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ABSTRACT
First-order gradient methods are commonly used for com-
pressed sensing reconstruction. However, for Fourier sam-
pling systems, they require computing a large number of
fast Fourier transforms (FFTs), which can be expensive in
real-time applications. In this paper, instead of random
sub-sampling, we use a sampling scheme inspired by cod-
ing theory from a recent sparse-FFT work of Pawar and
Ramchandran [1]. In particular, we show that Iterative Soft
Thresholding Algorithm (ISTA) applied on the Least Ab-
solute Shrinkage and Selection Operator (LASSO) with the
coded sampling provides an O(log n) per-iteration speedup
over the standard iteration cost, where n is the signal length.
Since the coded sampling operation deviates from the com-
mon randomized compressed sensing sampling, it is a priori
unclear whether LASSO can recover sparse signals. We
provide recovery guarantees for LASSO using the coded
sampling guaranteed for an arbitrary signal-to-noise ratio.
For a k-sparse signal and under a uniformly random sparsity
model, we show that LASSO recovers the underlying signal
from O(k log4 n) measurements through the coded sensing
system, with a reconstruction error that is proportional to the
sparsity level and noise energy. Moreover, we demonstrate
numerically computational speedups for using this scheme as
well as lower MRI acquisition times.

Index Terms— Compressed sensing, Coded sampling,
LASSO, FFAST, MRI

1. INTRODUCTION

In a variety of imaging applications, including magnetic res-
onance imaging (MRI), optical imaging, and astronomical
imaging, images can be sparsely represented in a transform
domain, and observed through the Fourier domain. Recent
results in compressed sensing [2, 3] enable us to exploit this
sparse structure to acquire and reconstruct signals from far
fewer Fourier measurements than required by the Shannon-
Nyquist theorem. In particular, the Least Absolute Shrinkage
and Selection Operator (LASSO) [4] is commonly used to re-
construct sparse signals from randomly undersampled Fourier

measurements. Algorithms for solving LASSO typically it-
eratively alternate between the spatial domain representation
and the Fourier domain representation of the signals, and as
a consequence perform a large number of fast Fourier trans-
forms (FFTs). As a result, compressed sensing is challenging
to apply in devices and acquisition systems demanding inex-
pensive, low-power or real-time signal analysis.

In an effort to make those fast Fourier transform steps
more efficient, a number of works [5, 6, 7, 8, 9, 10, 11, 1]
have proposed to compute a sparse discrete Fourier transform
(DFT) with low sampling and computational complexity. In
particular, an algorithm named FFAST (Fast Fourier Aliasing-
based Sparse Transform) [1] was proposed to use structured
uniform undersampling inspired by coding theory that en-
ables us to exploit this structure for reconstruction speed. Al-
beit very fast, the sub-linear time FFAST framework is re-
stricted to relatively high signal-to-noise ratio settings [12]. In
this work, we remove this restriction, targeting any signal-to-
noise ratio while reducing the reconstruction time to be linear
in the ambient dimension.

Specifically, we propose to collect measurements via
FFAST sampling, and reconstruct the signal by solving the
LASSO-optimization problem with the Iterative Soft Thresh-
olding Algorithm (ISTA) [13], and its accelerated version, the
Fast Iterative Soft Thresholding Algorithm (FISTA) [14]. We
achieve a O(log n) speedup per-iteration over conventional
random Fourier sampling, where n is the signal length. We
provide experiments that demonstrate a near 2x-speedup in
compressed sensing MRI applications [15].

Since the FFAST sampling operation deviates from the
common randomized compressed sensing sampling, it is a
priori not clear whether LASSO can recover sparse signals
from FFAST measurements. We provide recovery guaran-
tees for LASSO using FFAST sampling. We show that for
a k-sparse signal, under a uniformly random sparsity model,
LASSO recovers the underlying signal from O(k log4 n)
measurements through the FFAST sensing system, with re-
construction error proportional to the sparsity level, and the
noise energy.

Combining the results in this work, and the results in [1],
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the FFAST sensing system enables the following dual recon-
struction scheme, illustrated in Figure 1: When the signal-to-
noise is high, then the peeling decoder in [1] can be used to
deliver the reconstruction result quickly with computational
complexity O(k log4 n). On the other hand, when the signal-
to-noise is low, then LASSO can be used to deliver a more
reliable reconstruction with per-iteration computational com-
plexity of O(n).

FFAST
Sampling

Peeling
Decoding

LASSO

High SNR

Low SNR

per iteration

Fig. 1. Two reconstruction backends can be used for the FFAST
sensing system. The peeling decoder proposed in [12] is fast, but
fragile in low SNR. In this work, we show that FFAST sensing sys-
tem also speeds up LASSO reconstruction while providing recovery
guarantees for all SNR.

2. FFAST SENSING SYSTEM

DFT

Fig. 2. Illustration of the FFAST sensing system, which consists of
a DFT followed by a sequence of delays and uniform subsampling.
FFAST sampling consists of T stages. Each t stage uniformly sub-
samples the DFT of the sparse signal with factor pt, and random
delays {d1, . . . , dD}.

The FFAST sensing system was originally introduced and
designed in Pawar and Ramchandran [1] using ideas from
coding theory. Here we describe a perspective of the FFAST
sensing system suitable to this paper, and refer the reader to
their work for a different perspective.

Our goal is to design a Fourier sampling system for com-
pressed sensing that induces simple structures in the signal
domain. In the context of iterative methods, this enables us to
efficiently go back and forth between the Fourier and signal
domain. One way to achieve this is to use only stages of uni-
form sampling and delay, because both operations in Fourier
domain induce computational efficient operations in the sig-
nal domain: uniform sampling in the Fourier domain induces
aliasing in the signal domain, and delay in the Fourier domain
induces linear phase shift in the signal domain. If we are able
to use these two properties appropriately, we can bypass FFTs
while still iteratively go between Fourier measurements and
reconstructed signal.

Under the constraint of using only uniform sampling and
delay as components, how can we ensure that the sensing
system is suitable for compressed sensing? There are only
two parameters we can design: the sampling factors, and
the delay factors. For sampling factors, we note that there
are certain subsampling combinations that are not suitable
for compressed sensing. For example, a sampling scheme
that subsamples by 2 and 4 violates the Nyquist theorem. To
avoid these situations, we require the subsampling factors
to be co-prime. That is, we consider undersampling factors
p1, . . . , pT , such that gcd(pi, pj) = 1 if i 6= j. One con-
sequence of using co-prime subsampling factors is that the
aliasing induced in the signal domain does not overlap be-
tween different stages. As for the delay factors, we appeal to
conventional compressed sensing principle and use a random
sequence of delay factors, denoted as {d1, . . . , dD}. Putting
these design choices together, we obtain the FFAST sensing
system illustrated in Figure 2.

Concretely, we consider a s-sparse signal x of length
n, that is divisible by the co-prime under-sampling factors
p1, . . . , pT . Then let Wn = e−ı2π/n, At ∈ CnD/pt×n be
uniformly subsampled discrete Fourier matrices with sub-
sampling factor pt, and delays {d1, . . . , dD}. Specifically for
i = 0, . . . , n/pt − 1 and j = 0, . . . , n− 1,


[At](ipt)j

[At](ipt+1)j

...
[At](ipt+D−1)j

 =
1√
nκD


W

(ipt+d1)j
n

W
(ipt+d2)j
n

...
W

(ipt+dD)j
n



where κ :=
∑T
t=1 1/pt is a normalization factor ensuring that

the columns of the sensing matrix A defined below have unit
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norm. Then the signal model for the measured data is

y = Ax, A =

A1

...
AT

 .
We define m = nκD as the number of measurements, so that
the matrix A is of size m× n.

3. MAIN RESULTS

We consider the LASSO estimator to reconstruct our signal
from the measurement y:

x̂ ∈ argmin
x̃

1

2
‖Ax̃− y‖22 + λ‖x̃‖1.

Here, A is the measurement matrix pertaining to the FFAST
sensing system.

Amongst the fastest schemes to numerically solve this
convex optimization problem are iterative first-order proxi-
mal gradient methods such as ISTA and FISTA. Specifically,
ISTA performs the following update step:

x← Tαλ(x− αAH(Ax− y)),

where Tλ is the soft thresholding operator, an element-wise
operation defined as [Tλ(x)]i = (|xi| − λ)sgn(xi)

Proposition 1. Let A be the measurement matrix from the
FFAST sensing system in Section 2. Then first-order gradient
methods ISTA and FISTA have a one-time cost of computing
AHy with complexity O(n log n) and per-iteration computa-
tional complexity of O(n).

In contrast, ISTA and FISTA with conventional Fourier
compressed sensing system have the same one-time cost and
per-iteration computational complexity of O(n log n) since
they have to perform a FFT in each iteration. Hence, for a
large number of iterations, the FFAST sensing system offers
a log(n) speedup. Proposition 1 follows from normal matrix
AHA being sparse, which results in low iteration complexity
(see Section 4 for details).

Since the FFAST sensing system no longer follows the
random undersampling scheme suggested by compressed
sensing theory, it is natural to ask whether LASSO is still
able to recover the underlying sparse signal given FFAST
measurements. The following theorem answers this question
in the affirmative.

Theorem 1. Let S be a support set of cardinality s chosen
uniformly at random from [n] := {1, . . . , n}, let x ∈ Cn be
supported on S, and assume that the signs of the non-zero
values of x are chosen uniformly at random. Consider y =
Ax + e, with A as described in Section 2 with delays D ≥

log2(n), and e is additive noise obeying ‖e‖2 ≤ η. Suppose
that the number of measurements m satisfies,

m ≥ c1s log4(n). (1)

Then, for an appropriately chosen regularization parameter
λ, with probability at least 1− 2n−4, we have that

‖x̂− x‖2 ≤ c2η
√
s.

Here, c1 and c2 are numerical constants.

For the noiseless case, in which η = 0, Theorem 1 guar-
antees that x is the unique solution to `1-minimization. In the
noisy case, it guarantees stable recovery, even if the noise is
chosen adversarially. An outline of Theorem 1 is provided in
Section 5.

4. PROOF OF PROPOSITION 1

Considering the ISTA update step, we note that the term
AHy can be computed one time and reused for each itera-
tion. In particular, AHy can be computed using the FFT in
O(n log n) time.

The O(n) per-iteration complexity comes from the fact
that the normal matrix AHA is sparse. To see this, we first
note that the normal matrix for each stage t is given by:

[AH
t At]ij =

{
1

κptD

∑D
k=1W

(i−j)dk
n if mod(i− j, npt ) = 0,

0 else
.

The number of non-zero elements of each row of AH
t At is

given by |{i : mod (i, n/pt) = 0, i = 0, . . . , n− 1}| = pt.
Since {p1, . . . , pT } are co-prime, the off diagonals of the

matrices {AH
t At}Tt=1 are disjoint. Hence, the overall nor-

mal matrix, which is given by, AHA =
∑T
t=1 A

H
t At, has

n
∑T
t=1 pt non-zero elements.

Under the assumption that the undersampling factors do
not grow with n, then a matrix vector product with AHA
costs O(n) operations. Since the soft-thresholding operation
also costs O(n), the overall per-iteration complexity is O(n).

5. PROOF OUTLINE OF THEOREM 1

In this section, we outline the proof for the recovery guaran-
tees stated in Theorem 1. For ease of analysis, throughout
this section, we consider the constrained form of the LASSO
estimator:

x̂ ∈ argmin
x
‖x‖1 subject to ‖Ax− y‖2 ≤ η.

Note that for λ chosen appropriately as a function of η, the
constrained LASSO formulation and the original one are
equivalent.

The proof of Theorem 1 relies on the following proposi-
tion.
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Proposition 2. Let y = Ax + e, where e is additive noise
obeying ‖e‖2 ≤ η, and x is s-sparse and supported on S, and
has random signs. Suppose that∥∥AH

S AS − I
∥∥ ≤ 1

2
, (2)

and that, for some α ≥ 0,∥∥AH
S a`

∥∥
2
≤ α/2, for all ` /∈ S. (3)

Here, AS is the sub-matrix of A with columns in S, and a`
is the `-th column of A. Then, with probability at least 1 −
2Ne−α

−2/2, we have that

‖x̂lasso − x‖2 ≤ c1η
√
s.

Proof. Proposition 2 follows from a standard recovery con-
dition in the theory of compressive sensing. Specifically,
it follows from Theorem [16, Thm. 4.33] by setting h =
(A†S)

Hsign(xS).

Theorem 1 now follows from proposition 2 by establish-
ing that, provided that S is a support set chosen uniformly at
random from [n], and condition (1) holds true, then

P
[∥∥AH

S AS − I
∥∥ ≥ 1/2

]
≤ n−4 (4)

and, for any ` /∈ S,

P
[∥∥AH

S a`
∥∥
2
≥ 2α

]
≤ n−5. (5)

By the union bound, this implies that conditions (2) and (3)
hold with α = 1/

√
10 log(n) with probability at least 1 −

2n−5, as desired. The remainder of the proof is devoted to
proving inequalities (4) and (5).

5.1. Proof sketch of inequality (4)

We use Geshgorin’s disk theorem to obtain a lower bound on
the smallest and largest eigenvalue of AH

S AS , which in turn
yields an upper bound on

∥∥AH
S AS − I

∥∥. In order to apply
Geshgorin’s disk theorem, consider any row of the s× s ma-
trix AH

S AS , and note that the off-diagonal elements of that
row consist of s − 1 random entries of the off-diagonals of a
row of AHA. The sum of its off-diagonal elements therefore
concentrates around its average using Bernstein’s inequality.
The off diagonal average is small when the number of delays
is on the order of log2 n, which can be shown using Hoeffd-
ing’s inequality.

5.2. Proof sketch of inequality (5)

We next upper-bound the term
∥∥AH
S a`

∥∥
2
. Fix ` /∈ S. Recall

that S is chosen uniformly at random. Thus, AH
S a` is the

sum of s = |S| many entries chosen uniformly at random
from the squared off-diagonal elements of any row of AHA
(recall that AHA is a circulant matrix, and thus the set of
off-diagonal elements in each row is equivalent). In order to
upper-bound the probability of

∥∥AH
S a`

∥∥
2

exceeding a certain
value, we again apply Bernstein’s inequality.

6. EXPERIMENTS

In this section, we provide empirical experiments on a real
MRI dataset, to demonstrate the feasibility of using FFAST
sampling with LASSO reconstruction. Since images are
sparse in the wavelet domain, one difference in LASSO be-
tween the experiment here and previous sections is that we
impose the `1 norm on the wavelet transform. In addition, the
multi-channel acquisition MRI model is also incorporated in
the measurement matrix.

Figure 3 compares the LASSO-FISTA reconstruction us-
ing the FFAST sampling and Poisson-disk sampling, a com-
monly used MRI sampling pattern, on a 8-channel 2D axial
brain scan. The overall undersampling factor is 5.61. FISTA
was run for 100 iterations. The run time for FFAST sam-
pling and Poisson-disk sampling are 19 s, and 37 s respec-
tively. The image with FFAST sampling achieved a PSNR of
31.60 dB, and with Poisson-disk sampling achieved a PSNR
of 32.46 dB. While the PSNR with the FFAST sampling is
slightly lower than that with Poisson-disk sampling, visually
the images look very similar.
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Fig. 3. Comparison LASSO reconstruction between FFAST and
Poisson-disk sampling, a commonly used MRI sampling pattern, on
a brain image. The overall acceleration factor is 5.61. The run time
for FFAST sampling and Poisson-disk sampling are 19 s, and 37 s
respectively.
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