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ABSTRACT

Several distributed real-time signal sensing/monitoring sys-
tems require quantization for efficient signal representation.
These distributed sensors often have computational and en-
ergy limitations. Motivated by this concern, we propose a
novel quantization scheme called Approximate Lloyd-Max
(ALM) that is nearly-optimal. Assuming a continuous and
finite support probability distribution of the source, we show
that our ALM quantizer converges to the classical Lloyd-Max
quantizer with increasing bitrate. Our ALM quantizer, which
is recursive, converges exponentially fast with the number of
iteration. We illustrate our results using simulations for the
Beta(4,2) distribution on the source.

Index Terms— Quantization (signal), Piecewise linear
approximation, Convergence, Probability distribution

1. INTRODUCTION

Many modern systems monitor a large amount of real-time
data from distributed sensors (such as pollution, weather).
With the increasing scale of such sensor deployments (due
to IoTs and mobile sensing [1, 2, 3, 4]) signal compression
becomes essential for storage and communication [5]. Quan-
tization will play a significant role in efficient signal represen-
tations for these monitoring data.

Scalar quantization of a signal with known probability
distribution is studied in the well-known works of Lloyd and
Max [6, 7]. The classical Lloyd-Max algorithm requires in-
tegral computations in the centroid (conditional mean) up-
date step. In this work we introduce a nearly-optimal scalar
quantization algorithm, named as Approximate Lloyd-Max
(ALM), that bypasses these computationally complex oper-
ations. Similar to the Lloyd-Max, the ALM algorithm has a
recursive nature. We show exponentially fast convergence of
ALM to a limit near the point of convergence of the Lloyd-
Max quantizer. Our algorithm uses simpler update rules gov-
erned by localized mean square error optimizations.

Related work: Mean Square Error (MSE) scalar quanti-
zation at fixed bitrate with a known data distribution was stud-
ied in independent works of Lloyd and Max [6, 7]. Sharma

extended the Lloyd-Max method to a general class of (con-
vex/semiconvex) distortion measures [8]. Vector data quan-
tization was introduced by Linde, Buzo and Gray [9], result-
ing in the celebrated LBG algorithm. Extensions of vector
quantization to predictive and variable rate universal quantiz-
ers were performed by Gray and Ziv respectively [10, 11, 12].

The convergence aspects of the Lloyd-Max algorithm
are widely analyzed in literature. Convergence at exponen-
tial decay rate to a unique global minima, under convex
cost function and a log-concave probability distribution has
been shown [13]. Sabin and Gray proved the absolute con-
vergence of the Lloyd algorithm and its empirical density
consistency on training data [14]. Wu has shown the conver-
gence of the Lloyd method I for continuous, positive density
function defined over a finite interval using the idea of fi-
nite state machines [15]. Quantization based on training
data finds applications in (adaptive) signal processing and
machine learning. Some well-known data-centric quantiz-
ers include learning vector quantizer (LVQ) and K-means
clustering [16, 17, 18, 19].

Our contributions differ in the following ways.

• ALM uses piecewise linear density approximations to
simplify the Lloyd-Max level updates. The quantizer is
nearly-optimal at high bitrates.

• ALM has exponentially fast convergence with the num-
ber of iterations. The convergence analysis hinges on
insights from Perron-Frobenius theory [20, 21]

Remark: Due to space constraints the complete proofs of
results are made available in the supplementary paper [22].

2. SOURCE AND QUANTIZER MODEL

We model the scalar data to be generated from a random con-
tinuous source having a known density function fX(x). Let
fX(x) be positive, differentiable and (without loss of gener-
ality) supported on a finite interval D = [0, 1]. In addition,
the following smoothness condition is assumed to hold,

|f ′X(x)| ≤ m ∈ (0,∞) for all x ∈ D. (1)
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This condition ensures that the slope of the density is bounded
and hence the density is smoothly varying.

Let Q(.) be a scalar quantizer function defined on a do-
main set D. The range set of Q(.) is a finite discrete set con-
sisting of the quantization levels ~q = [q1, q2, · · · , qK ]. The
size of the set, K indicates the bitrate used by the quantizer.
We assume the order q1 < q2 < · · · < qK . The quantization
error is a distortion measure that evaluates the performance of
the quantizer. In this paper we choose the distortion criteria
as the mean square error (MSE), given by

RQ(fX) := E
[
(Q(X)−X)

2
]
. (2)

A quantizer, Q∗ is called (globally) optimal if it results in
the minimum MSE among all quantizers. That is, Q∗ =
arg minQ(.)RQ(fX). The objective of this work is to pro-
vide an analytically and computationally feasible quantiza-
tion scheme that is nearly optimal at high bitrates. This prop-
erty of the quantizer is termed as asymptotic near-optimality.
That is limK→∞ |Q∗(x)−Q(x)| = 0 for all x ∈ D.

The scalar quantization problem has a K dimensional
search space over [0, 1]K . An efficient algorithmic search for
the optimal quantizer is characterised by the number of iter-
ations required to converge. An algorithm is said to have an
exponential decay rate if the levels generated at each iteration
approaches the optimal levels with exponentially decaying
error. The quantizer proposed in this work satisfies both
near-optimality and exponential convergence for K large.

3. APPROXIMATE LLOYD-MAX

The Lloyd-Max (LM) algorithm is known to generate the
globally optimal quantizer for the class of continuous and
positive source distributions on a finite support [15]. We
introduce the ALM quantizer that achieves (asymptotic) near
optimality on the same distribution class (with additional
smoothness condition). ALM provides a computational ad-
vantage over LM, by avoiding the integration operation in the
centroid update step. Similar to LM algorithm, ALM can be
implemented with parallel (concurrent) level updates. This
section describes the ALM algorithm, which uses a piecewise
linear approximation of the source density. The features of
the algorithm such as asymptotic near optimality and expo-
nential convergence are shown in Sec. 3.2 and Sec. 4.

For elucidating our quantization algorithm, we introduce
two reference levels, q0 := 0 and qK′ := 1 fixed at the end-
points of D. In this paper we assume K ≥ 2. We develop the
ALM algorithm based on the MSE cost function minimiza-
tion as described below.

3.1. ALM cost minimization and level updates

The LM quantizer minimizes the MSE cost function by alter-
nate modifications of the quantization levels {qi; 1 ≤ i ≤ K}

and the boundary set {bj ; 1 ≤ j ≤ K + 1}. The MSE min-
imization can be performed by locally optimizing the MSE
cost in the left and right decision neighborhood of each quan-
tization level. Cost function in (2) can be decomposed as,

R(Q)(fX) =

∫ 1

0

(Q(x)− x)
2
fX(x)dx

=

K∑
k=1

∫ bk+1

bk

(qk − x)
2
fX(x)dx (3)

The boundary set in the expression above corresponds to
bj+1 =

qj+qj+1

2 for j = 1, 2, · · · ,K − 1, b1 := q0 and
bK+1 := qK′ . The MSE cost in (3) is minimized by taking
partial derivatives with respect to the level qk. Using Leibniz
rule the optimal levels are obtained as, [23]

0 = 2

∫ bk+1

bk

(qk − x)fX(x)dx, (4)

where 1 ≤ k ≤ K. The solution of qk from the equation
above does not have a closed form expression. This issue
is solved in classical LM algorithm by fixing the boundary
bk and bk+1 according to previous iterate of qk, then fol-
lowed by the centroid computation. In ALM algorithm we
use an alternative approach. That is, we apply a piecewise
linear approximation of the density function fX(x) between
the neighboring quantization levels qk−1 and qk+1, allowing
the boundaries to depend on the (unknown) variable qk.

We consider the first order approximation of the density
function in the nearest neighbor interval of qk; i.e.,

fapp(x) = mkx+ ck, for x ∈ [qk−1, qk+1] (5)

where mk and ck corresponds to the slope and the intercept
of the approximation. These parameters are determined us-
ing the end point conditions fapp(qk−1) = fX(qk−1) and
fapp(qk+1) = fX(qk+1). The linear approximation simpli-
fies (4) and a computable expression for optimal qk is ob-
tained. The solution of qk are the roots of a cubic polynomial,
r(u) = r0 + r1u + r2u

2 + r3u
3. The real root in the inter-

val [qk−1, qk+1] is chosen as the optimal (existence of such
a root is always ensured; see Appendix B [22]). The coeffi-
cients {r0, r1, r2, r3} depend on mk, ck, qk−1 and qk+1. For
2 ≤ k ≤ K − 1, the equation becomes quadratic as r3 = 0
(See Table. 1). At the boundaries, i.e. k = 1 and k = K, the
partition boundaries are asymmetric and hence r3 6= 0.

The ALM scheme is summarized in the following steps:

1. ~q (i=0) is initialized uniformly in [0, 1]

2. In iteration i ≥ 0, ~q (i) is partitioned into odd and even
sets, Qodd = {q1, q3, · · · } and Qc

even = {q2, q4, · · · }
3. qk ∈ Qodd is updated (in parallel) to the real root of
r(u) = 0 in [qk−1, qk+1] (see Table 1), using parame-
ters mk, ck chosen according to (5).
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Table 1. Coefficients of the polynomial equation r0 + r1u+ r2u
2 = r(u) = 0, for ALM level updates; 2 ≤ k ≤ K − 1

Coefficients r0 r1 r2

2 ≤ k ≤ K − 1 −mk

24

(
q3k+1 − q3k−1

)
− ck

8

(
q2k+1 − q2k−1

) ck
4

(qk+1 − qk−1)
mk

8
(qk+1 − qk−1)

4. qk ∈ Qeven is updated (in parallel) similar to step 3.

5. i is incremented and convergence (or stopping rule) is
checked. Algorithm is terminated if true, else iteration
jumps to step 2.

The key feature of the algorithm is its simplified implemen-
tation. At each iteration, the set of odd and even indices of
~q are concurrently updated. We term this update rule as al-
ternating between evens and odds. The stopping criteria for
the ALM algorithm can be set according to the convergence
requirement (more details in Sec. 4). In practice, we run the
algorithm for an iteration count larger than K.

3.2. Asymptotic Near Optimality

We show that the ALM scheme approaches the MSE of the
LM (optimal) for K � 1. The near-optimality result ensures
that ALM generates quantization levels that are asymptoti-
cally (K → ∞) closer to the LM levels. For brevity we use
the following notation. Let ~q ∗ be the optimal LM quantizer
with respect to the true density, fX(x) and ~q ∗A be the ALM
quantizer using fapp(x). For ease of exposition we fixK = 2.
The Taylor expansion of the fX(x) about x = q2 can be rep-
resented as fX(x) = fX(q2)+f ′X(q2)(q2−x)+O((x−q2)2).
At optimal q∗2 , the true and approximate density are related as

fX(q∗2) = fapp(q∗2) +O(εK), (6)

where εK = max1≤k≤K−1 |qk+1 − qk−1|2.

Theorem 1 (Asymptotic optimality of ALM). The approxi-
mate solution of the ALM quantization (see Table. 1), q∗2A con-
verges to the true solution, q∗2 asK →∞. That is, there exists
a K ≥ K0 such that |q∗2A − q∗2 | ≤ ε for all ε > 0.

Proof. Due to space constraints we provide only an outline
of the proof (full version of the proof is available in Theo-
rem 3.1 [22]). At iteration i = 1 of the ALM algorithm, let

the boundaries be b2 =
q
(0)
1 +q

(0)
2

2 and b3 =
q
(0)
2 +q

(0)
3

2 . Then
the one step update using the optimality condition in (4), re-
sults in q(1)2 and q(1)2A for LM and ALM respectively. Using
the fact that the roots of the LM and ALM lies in [q

(0)
1 , q

(0)
3 ],

we observe, |q(1)2A − q
(1)
2 | ≤ εK . Since adjacent levels q1 and

q3 are also bounded from their optima by εK , by an inductive
argument it follows that,

|q∗2A − q∗2 | = lim
i→∞

|q(i)2A − q
(i)
2 | ≤ εK .

As K →∞, εK → 0, and hence the result.

4. CONVERGENCE OF ALM ALGORITHM

4.1. Level shifts as linear updates

The optimal solution for the ALM iterative update of qk is the
solution of (4) in the interval [qk−1, qk+1]. The solution at
ith iteration can hence be expressed as a convex combination,
q
(i+1)
k = θ

(i)
k q

(i)
k−1 + (1− θ(i)k )q

(i)
k+1, where θ(i)k ∈ [0, 1]. The

above update equation will aid in the convergence analysis of
ALM. In vector form the alternating even-odd update rule is,

~q (i+1) = P
(i)

oddP
(i)
even~q

(i) where i = 0, 1, . . . . (7)

In the above equation, P (i)
even and P (i)

odd represent the even and
odd index update rules, entries of which are determined by
convex combination of the ALM update. For K ′ = 4,

P
(i)

odd =


1 0 0 0 0

θ
(i)
1 0 1 − θ

(i)
1 0 0

0 0 1 0 0

0 0 θ
(i)
3 0 1 − θ

(i)
3

0 0 0 0 1

 ,

P
(i)
even =


1 0 0 0 0
0 1 0 0 0

0 θ
(i)
2 0 1 − θ

(i)
2 0

0 0 0 1 0
0 0 0 0 1

 . (8)

Podd and Peven are row stochastic with the location of zero
entries satisfying (row) symmetry. Every iteration preserves
the reference levels, q0 and qK′ . Thus the quantizer itera-
tion governed by (7)-(8), has the required structure for Perron
Frobenius theory to apply [20, 21].

4.2. Insights from Uniformly Distributed Sources

Consider a uniformly distributed source in [0, 1]. LM and
ALM gives the same result as the piecewise linear approxima-
tions of the density are exact. For illustration let K ′ = 4 and
~q (0) be initialized randomly. Then, ~q (1) = P2P1~q

(0), where
P1 = P

(0)
even and P2 = P

(0)

odd. We observe that θ(i)1 = 2/3,

θ
(i)
2 = 1/2 and θ(i)3 = 1/3 (verifiable using (4)). As P1 and
P2 are row-stochastic, the same property holds for P2P1. We
can show the existence of a fixed point, ~q ∗ = P2P1~q

∗ such
that ~q ∗ is the limit point of the ALM. In Theorem. 2, we show
the uniqueness of ~q ∗. Also we observe an exponential decay
of O (1/3n) due to the dominant eigenvalue of P2P1 being
1/3. Using these insights we discuss the ALM convergence.
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Fig. 1. (a) Error and bitrate tradeoff of ALM and LM. For K > 8, the MSE of the ALM is nearly same as LM scheme. (b)
Quantizer evolution of ALM showing the alternating even-odd updates. K = 8 with uniform initialization in [0.5, 1] has been
used. (c) Quantization levels after n = 100 iterations. Levels are near optimal in regions of high probability density.

4.3. Convergence Analysis of ALM

The key idea of the convergence proof hinges on the row-
stochastic nature of the productP (i) = P

(i)

oddP
(i)
even, of the form

P (i) =


1 0 0 0 0

θ
(i)
1 0 θ̄

(i)
1 0 0

θ
(i)
2 θ

(i)
1 0 θ̄

(i)
1 θ

(i)
2 + θ̄

(i)
2 θ

(i)
3 0 θ̄

(i)
2 θ̄

(i)
3

0 0 θ
(i)
3 0 θ̄

(i)
3

0 0 0 0 1

 (9)

where θ̄(i)k = 1−θ(i)k . From ALM update (7)-(8), after L iter-
ations ~q (L) =

∏L
i=1 P

(i)~q (0). As L → ∞, the odd columns
of this (L term) product eventually goes to the zero vector.
This is true since each P (i) is row-stochastic and the ALM
update in (7) corresponds to a non-trivial convex combina-
tion. The smoothness assumption (1) in our source model,
upper bounds the slopes of the piecewise linear approxima-
tion to m, which results in the parameter 0 < θ

(i)
k < 1. This

fact will be used to state the main convergence result. The
convergence analysis of ALM is similar in form to gossip al-
gorithms and consensus models [24, 25]. However, our case
differs as we get two fixed points as against one in the former.

Theorem 2. The ALM iterations converge to a quantization
vector, ~q ∗ = P ∗~q (0), where P ∗ = limL→∞

∏L
i=1 P

(i), and
~q ∗ is independent of the initialization ~q (0).

Proof. We note that the limiting matrix P ∗ converges to a
matrix with all columns except first and last as zero vectors
(see Proposition 2 [22]). The first and last columns, viz. ~c1
and ~cK+1, are non-zero vectors, as the transformation P (i),
preserves the reference levels q0 and qK+1. P ∗ has the form
[~c1 0 · · ·0 ~cK+1]. The all ones vector, 1 is an eigenvector cor-
responding to λ = 1. Then, ~c1+~cK+1 = 1. That is the vector
pair ~c1 and ~cK+1 are order reversed. Since rank of P ∗ is two,

each of the vectors ~c1 and ~cK+1 are independent eigenvectors
of λ = 1 (having geometric multiplicity of 2). Imposing the
ordering constraint 0 := q0 < · · · < qK+1 := 1, we can
show that ~cK+1 corresponds to the unique global minimizer
of the ALM algorithm. The iteration follow exponential rate
of convergence, as every eigenvector component, decays ex-
ponentially at the rate of its eigenvalue (as |λ| ≤ 1). The
dominant eigenvalue, λ(2) decides the decay rate.

5. SIMULATION RESULTS AND REMARKS

Simulation results account for the three aspects of the quan-
tizer performance; viz. error-bitrate tradoff, convergence and
accuracy. In Fig.1 (a), we compare the MSE for the ALM
and LM quantizers. The quantization evolution diagram for
Beta(4,2) distribution is shown in Fig.1 (b). In Fig.1 (c) the
comparison of the optimal (LM) and near-optimal (ALM) lev-
els are shown. The ALM levels compared to the LM are
greater, perhaps due to of the skewness of the Beta(4,2) den-
sity considered here. Computational improvement of ALM is
studied for K = 8. A saving of 3.4X in terms of simulation
time (in MATLAB) is observed, when the stopping criteria
is chosen such that the computed MSE is within 1% of the
optimal MSE (see Fig. 4(d) in [22] for details).

6. CONCLUSIONS

We introduced the ALM algorithm which is a novel approach
to simplify the computations in Lloyd-Max quantization. The
convergence analysis used here exploits the convex (linear)
combination property of the level updates, which is a new
contribution as far as we know. Extension to envelope con-
strained quantization [26], and its data-driven equivalents are
envisaged as our future work.
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