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ABSTRACT

Conventional analog–to–digital converters (ADCs) are limited in dy-
namic range. If a signal exceeds some prefixed threshold, the ADC
saturates and the resulting signal is clipped, thus becoming prone
to aliasing artifacts. Recent developments in ADC design allow to
overcome this limitation: using modulo operation, the so called self-
reset ADCs fold amplitudes which exceed the dynamic range. A
new (unlimited) sampling theory is currently being developed in the
context of this novel class of ADCs. In this paper, we make a fur-
ther step in this direction by coupling modulo sampling with one-bit
Σ∆ quantization, or, in other words, consider one-bit unlimited sam-
pling. We show that our scheme overcomes the dynamic range limi-
tations of conventional one-bit quantizer, where no recovery guaran-
tees are possible if the signal’s dynamic range substantially exceeds
the range of its one-bit output. We provide a constructive recov-
ery algorithm for bandlimited signals from one-bit modulo samples
complemented with a bound on the reconstruction error.

Index Terms— Analog-to-digital converters (ADC), sigma-
delta, quantization, sampling theory, modulo samples.

1. INTRODUCTION

Recently, in [1], the authors introduced the Unlimited Sensing
Framework which overcomes the dynamic range limitation that
is a fundamental bottleneck common to all formats of digital data
acquisition devices. The key idea underpinning the unlimited sens-
ing framework is that a modulo operation folds the high dynamic
range samples, beyond the recordable range, into low dynamic range
modulo samples. While the motivation behind the use of such an op-
eration is clear—to compress the ambient dynamic range—there are
two questions that must be answered so that this abstract idea can be
put into practice. The first question is: can modulo non-linearity be
implemented in the conventional analog-to-digital converter (ADC)
format? Furthermore, can a function or a signal be recovered from
modulo wrapped measurements?

In [1], the authors make the link between modulo non-linearity
and its implementation with a radically different form of ADCs, the
self-reset ADCs, which reset the voltage before saturating/clipping.
The main result in [1], the unlimited sampling theorem for bandlim-
ited signals, proves that a simple correction to the usual Nyquist rate
linked with Shannon’s sampling theorem, allows for reconstruction
of an arbitrarily high dynamic range signals from modulo folded low
dynamic range samples. The sampling rate is independent of the
ADC threshold and purely depends on the signal’s bandwidth, and
not on the modulo threshold. This is remarkable as signals with
higher dynamic range would undergo many more folds for a fixed
threshold. Consequently, the number of discontinuities increases,
and analogous results in sampling theory would suggest that more

folds or discontinuities imply a higher sampling rate. In [1], this dif-
ficulty is overcome by designing a recovery algorithm adapted to the
dynamic range, which then comes with a sampling theorem that is
independent of the ADC threshold.

Subsequently, the authors generalized this approach to the prob-
lem of recovering sparse signals from low-pass filtered, modulo
measurements [2] and to the signal model of a sum-of-sinusoids [3].
The common feature in [2] and [3] is that the results are based on
a local reconstruction theorem—how to recover a finite subset of
samples given modulo samples? Understandably, in case of local
reconstruction results, the sampling rate depends on the sparsity as
well as the dynamic range of the signal.

Several follow up papers have discussed new variations linked
with the unlimited sensing framework:

• In [4], Rudresh et al. present an interesting wavelet based recon-
struction scheme for unlimited sampling strategy.

• In [5], Cucuringu and Tyagi discuss denoising of modulo sam-
ples. The authors devise an elegant optimization approach based
on quadratically constrained quadratic program (QCQP).

• In [6], Musa and co-workers take the unlimited sampling architec-
ture in the direction of compressed sensing and present a recovery
approach based on generalized approximate message passing.

• In [7], Ordentlich and colleagues discuss a hardware design for
electronic implementation of the modulo sensing strategy with the
goal of minimizing the number of bits per sample.

In this paper, our goal is to take a step towards practical imple-
mentation of the unlimited sampling theorem, but in a different light;
advancing along the lines of [1], we consider the case of quanti-
zation. More specifically, we consider analog-to-digital conversion
based on Sigma-Delta or Σ∆ scheme. The Σ∆ scheme capitalizes
on the fact that oversampling with fewer bits is cheaper to imple-
ment in hardware. This is also the distinct feature of the unlimited
sensing architecture; modulo mapping amounts to recording lower
significant bits and reconstruction is based on a constant factor over-
sampling criterion. Thus integrating Σ∆ with unlimited sampling is
a natural extension to the theory in [1] and the advantages are two
fold; firstly, in doing so we overcome the main drawback of Σ∆
scheme which can only handle signals with prefixed dynamic range
and, secondly, it gives a conceptual guideline towards making the
unlimited sensing architecture practically feasible.

Σ∆ has been known to circuit engineers since the 1963 pioneer-
ing work [8] of Inose and Yasuda; a rigorous mathematical study was
initiated by Daubechies and DeVore in [9] in the early 2000’s. The
work [9] as well as a number of follow up papers proved that repre-
senting a signal by only a single bit per sample via Σ∆ still allows
for accurate reconstruction when combined with substantial over-
sampling; this observation allows for circuits of very low complex-
ity. The best known error decay rate for such one-bit Σ∆ schemes is
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Fig. 1: Comparison between conventional one-bit sampling and one-bit unlimited sampling (both exploiting Σ∆ scheme). (a) Conventional method leads
to reconstruction failure whenever the dynamic range of the signal exceeds the dynamic range of one-bit samples, while our method still allows for fair
reconstruction. (b) Conventional one-bit samples exhibit saturation resulting from the fact that dynamic range exceeds [-1,1]. (c) Due to amplitude folding,
one-bit modulo samples capture sufficiently more information about the signal than conventional one-bit samples.

Fig. 2: System architecture for one-bit unlimited sampling.

exponential in the oversampling rate [10,11], which is also known to
be optimal [12, 13]. This accuracy of reconstruction is achieved by
combining Σ∆ schemes of different orders. While in this paper we
will focus on the classical and well-studied first order Σ∆ scheme,
we expect that in follow-up works, our approach can also be gen-
eralized to higher orders. To the best of our knowledge, this is the
first work to discuss approximation theory and recovery guarantees
of quantization within the unlimited sensing framework.

Our contributions are the following:
1) We combine the advantages of modulo sampling and one-

bit Σ∆ to obtain an ADC scheme that has low complexity due to
coarseness of quantization and at the same time overcomes the dy-
namic range limitations of conventional one-bit Σ∆.

2) We provide a sufficiency condition for recovery of bandlim-
ited signals from one-bit modulo samples, as well as an algorithm
for recovery and a bound on the reconstruction error.

2. ONE-BIT QUANTIZATION FROM MODULO SAMPLES

Motivated by [1], we use the model in Fig. 2 to represent the self-
reset ADC coupled with Σ∆ quantizer or Σ∆. We assume that the
signal g belongs to the Paley-Wiener space PWΩ (R)—the space of
finite energy, bandlimited functions, that is, g ∈ L2(R) and g ∈
BΩ ⇔ ĝ(ω) = 1[−Ω,Ω](ω)ĝ(ω) where ĝ(ω) :=

∫
g(t)e−jωtdt de-

notes the Fourier transform and 1D denotes the indicator function on
domain D. When a signal is not bandlimited, then it is pre-filtered
with a low-pass kernel. Furthermore, we will normalize the band-
width to π such that g ∈ Bπ .

We also assume that we have control over the superoscillation

property of g. As described in [14], superoscillation is the phe-
nomenon, that, for arbitrary times {ti}Ni=1 and amplitudes {ai}Ni=1,
it is possible to find signal f ∈ PWΩ (R) with fixed Ω such that
f(ti) = ai for i = 1, . . . , N , where N is arbitrarily large. In other
words, local segments of such signal can oscillate at a frequency
higher than 2Ω. This is not the case for many commonly used sig-
nals: images, sounds, electrical, etc [15]. However, superoscillating
functions have found applications in quantum physics, metrology,
antenna design, optics. If the signal exhibits superoscillating be-
haviour around the modulo threshold, it leads to a high number of
ADC resets, making one-bit unlimited sampling setup difficult to
analyze. Namely, our approach will require an increase in the sam-
pling rate depending on the increase in oscillation. To quantify this,
we define the superoscillation (SO) parameter for g as follows.

Definition 1 (SO Parameter). We say that g ∈ PWπ (R) has super-
oscillation (SO) parameter c ∈ R if for all µ, α ∈ R the function
g(t)− µ has at most 2 zeros in the interval [α, α+ c].

Finally, we assume that the upper bound on the infinity norm of
g is known, βg > ‖g‖L∞ .

At first, the function g undergoes a non-linear amplitude folding

Mλ : t 7→ 2λ
([[

t
2λ

+ 1
2

]]
− 1

2

)
, (1)

where [[t]] := t − btc is the fractional part of t and the output of (1)
is in the range [−λ, λ]. From now on, we will set λ = 1 in order
to have a match with one-bit Σ∆ which requires amplitudes smaller
than 1. After folding, M1(g(t)) is uniformly sampled:

y[n] := M1

(
g
(
n
τ

))
= M1 (g[n]) , n ∈ Z, (2)

where τ > 1 is the oversampling rate (for g ∈ Bπ, τ = 1 implies
critical sampling, that is, there is no oversampling).

In order to discretize the range, the signal is quantized via the
first order, one-bit Σ∆ which runs the following iteration on modulo
samples for n ∈ Z:{

u[n] = u[n− 1] + y[n]− q[n],

q[n] = sign
(
u[n− 1] + y[n]

)
,

(3)

where {q[n]}n∈Z are one-bit modulo samples and {u[n]}n∈Z are the
state variables with initialization uinit := 0.
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The modulo decomposition property (MDP) in [1] allows us to
write g(t) = Mλ(g(t)) + εg(t), where εg(t)∈ 2λZ is a piecewise-
constant function. Its discrete domain equivalent implies g[n] =
y[n] + εg[n]. Therefore, recovering g[n] (and later g(t)) from y[n]
boils down to finding εg[n]. In this paper, we consider

εq[n] = qMB [n]− q[n], (4)

where qMB [n] := q[n] + εg[n] is a multi-bit representation of g(t).
Finding εq[n] allows to recover qMB [n] which is then followed up
by recovery of original signal g(t).

3. ONE-BIT UNLIMITED SAMPLING: A SUFFICIENCY
CONDITION AND A RECOVERY ALGORITHM

In contrast to [1], applying the finite difference operator ∆a[n] :=
a[n + 1] − a[n] to the sequence q[n] does not result in a sequence
which is close to ∆εq[n] and allows for recovery of εq[n]. In this
paper, instead, we develop and capitalize on an alternative to [1]
which allows for recovery with accuracy O(1/τ), which is close to
the best known error bound of O(τ−3/2) for conventional first order
Σ∆ [16].

In [17], Candy observed that the moving average filtering of
quantized measurements, with hmeasurements taken into account at
a time, leads to the mean values of y[n] up to O(1/h) error bound.
Here, we express the moving average filtering in terms of discrete
convolution (a ∗ b)[n] :=

∑
k∈Z a[k]b[n− k] as

q[n] =
(
q ∗ h−1B0

h

)
[n], (5)

where B0
h[n] = B0(n

h
) is a sampled version of B-spline of order

0 given by B0(t) := 1[0,1) (t). Let ∆ha[n] := a[n + h] − a[n];
the finite difference with step size h. Observe that the following
convolution operations are equal:

∆h

(
q ∗ h−1B0

h

)
[n] =

(
q ∗∆hh

−1B0
h

)
[n] =

(
q ∗∆B1

h

)
[n] (6)

where B1
h[n] is a sampled version of B-spline of order 1 with

suppB1(t) = (−1, 1). Note that maxB1(t) = 1 (at t = 0). Let
BN be a B-spline of order N with suppBN = (−N

2
, N

2
). We

denote its normalized and scaled version

ψN (t) := BN
(
N
2
t
)
/max

(
BN (t)

)
(7)

and the corresponding sampled version ψNh [n] = ψN
(
n
h

)
, n ∈

Z, h ∈ 2N with suppψNh = (− 1
2
, 1

2
), maxψNh [n] = 1 (at n = 0).

Motivated by (6), we consider the discrete convolution of se-
quence ∆q[n] with ψNh [n] and using (3) and MDP we get

∆q ∗ ψNh = ∆g ∗ ψNh︸ ︷︷ ︸
1

−∆εg ∗ ψNh︸ ︷︷ ︸
2

−∆2u ∗ ψNh︸ ︷︷ ︸
3

. (8)

Now let us analyze each of the three summands in (8) separately
and start with ∆εg ∗ ψNh . In [1], the authors give the upper bound
for finite differences of g[n], that is, ‖∆g‖`∞ 6 (πe/τ) ‖g‖L∞ .
Choosing τ > πe‖g‖L∞ guarantees that g does not cross more than
one modulo threshold in one sampling interval, therefore ∆εg can
only take values±2 or 0. Non-zero entries of ∆εg correspond to the
jumps that occur due to amplitude folding. We can write

(
∆εg ∗ ψNh

)
[n] = 2

∑
k∈I+

T kψNh [n]−
∑
k∈I−

T kψNh [n]

 (9)

where I+ and I− are the index sets of positive and negative
entries of ∆εg , respectively, and T ka[n] :=

∑
n∈Z a[n]δ[n −

k] is the translation operator. Each summand in (9) has width
|supp(ψNh [n])| = h − 1, and we will refer to these summands
as spikes. In case of non-overlapping spikes, the local extrema of
(∆εg ∗ψNh )[n] coincide with non-zero entries of ∆εg and allow for
an easy recovery of the latter, while in case of overlapping spikes
this does not happen. Therefore, it is vital to determine under which
conditions the spikes overlap.

If g is monotonically increasing or decreasing on some interval,
‖∆g‖`∞ 6 (πe/τ) ‖g‖L∞ implies that non-zero entries of ∆εg
are located at least d2τ/πe‖g‖L∞e samples apart. Then choosing
h < 2τ/πe‖g‖L∞ guarantees that no overlapping occurs.

Now consider the case when g crosses same threshold several
times on some interval. Then g crosses µ at most twice per in-
terval of length c (cf. Def. 1). Note that in case of two crossings
per interval, the corresponding spikes must have opposite signs and
will partially cancel each other in case of overlap. The distance be-
tween these consecutive crossings can be arbitrarily small and over-
laps cannot be avoided in general. However, they will only occur if
the distance between crossings is less than h−1

τ
. In Section 3.1, we

will show that such overlaps will not cause any substantial inaccura-
cies in reconstruction.

In the following analysis, we assume the presence of both over-
lapping and non-overlapping spikes. With well-chosen τ and h we
have ‖∆εg ∗ ψNh ‖`∞ = 2. If we guarantee that the other two sum-
mands in (8) are small enough such that

‖∆g ∗ ψNh ‖`∞ + ‖∆2u ∗ ψNh ‖`∞ < 1, (10)

then ∆εg ∗ψNh dominates and leads to ‖∆q ∗ψNh ‖`∞ > 1, whereas
exceeding this threshold is guaranteed for all non-overlapping
spikes.

For the first summand in (8), by applying Young’s inequality and
using ‖∆g‖`∞ 6 (πe/τ) ‖g‖L∞ from [1], we have,

‖∆g ∗ ψNh ‖`∞ 6 (πe/τ) ‖g‖L∞
(
h‖ψNh ‖L1 + 1

)
. (11)

Finally, for the last summand we use Young’s inequality and the
fact that ‖u‖`∞ < 1 (see [9]) and we have

‖∆2u ∗ ψNh ‖`∞ 6 ‖u‖`∞‖∆2ψNh ‖`1 <
1

h
‖∂2ψNh ‖L1 . (12)

In the above inequalities, we omit detailed computations due to space
limitations. Note that the last estimate is independent of the over-
sampling rate τ and depends only on the kernel’s sampling rate h.

Combining (10), (11) and (12), we have the following condition:

πeτ−1‖g‖L∞
(
h‖ψNh ‖L1 + 1

)
+

1

h
‖∂2ψNh ‖L1 < 1. (13)

Let us at first give the lower bound for h. Splitting the sum in (13)
in two equal parts results in h > 2‖∂2ψNh ‖L1 . Recall from the
previous discussion that the occurrance of overlaps depends on h and
that they are more likely to occur if h is large. Therefore, our choice
of h for the reconstruction algorithm is hr := 2

⌈
‖∂2ψNh ‖L1

⌉
. Now,

recalling that βg > ‖g‖L∞ we obtain the sufficient condition for τ ,

τ > 4πeβg
(⌈
‖∂2ψNh ‖L1

⌉
‖ψNh ‖L1 + 1

)
. (14)

Now we are ready to recover the approximate residual ε̃q[n]
from one-bit modulo samples. We discard the part of (∆q ∗
ψNh )[n] which has absolute value smaller than 1 by applying
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Algorithm 1 Recovery from One-Bit Modulo Samples

Data: q[n], ψNh [n] and βg ≥ ‖g‖L∞ .
Result: g̃(t) ≈ g(t).

1) Compute (∆q ∗ ψNh )[n].
2) Compute M1

(
(∆q ∗ ψNh )[n]

)
− (∆q ∗ ψNh )[n] and

retain one point from each of its non-zero neighborhoods
to obtain ∆ε̃q[n].
3) Apply S to obtain ε̃q[n].
4) Compute q̃MB [n] = q[n] + ε̃q[n].
5) Reconstruct g̃(t) from q̃MB [n] via low-pass filter.

(a)

(b)

Fig. 3: One-bit modulo sampling of bandlimited signals. (a) Randomly gen-
erated bandlimited signal g ∈ PWπ (R), its one-bit modulo samples q[n]
acquired with τ = 250 as well as the reconstructed signal g̃ which is ob-
tained using second order ψ2. The mean error |g − g̃| is 2.1 × 10−3. (b)
The true residual εg [n] and its approximate recovery ε̃q [n].

M1

(
(∆q ∗ ψNh )[n]

)
− (∆q ∗ ψNh )[n]; then take an arbitrary

point from each non-zero neighborhood of the resulting sequence
to obtain ∆ε̃q[n].1 Finally, we apply the summation operator
S : (ai)

∞
i=1 7→

∑i
i′=1(ai′)

∞
i=1 to recover ε̃q[n] (up to additive

multiples of 2). Now we can use it to obtain a multi-bit quantized
representation of g, that is, q̃MB [n] = q[n]+ε̃q[n], and then compute
the reconstruction g̃(t) by low-pass filtering q̃MB [n].

3.1. Bound on the reconstruction error

Here we formally state two results which show that we reasonably
recover g̃(t) from q̃MB [n] and it will not lead to a reconstruction
error bigger than O(1/τ). A standard approach to signal recovery
from its Σ∆ samples uses the analogue of Shannon interpolation

1A practical and more precise approach in MATLAB; in order to find a
more precise ∆ε̃q [n], we retain only the local extrema of (∆q ∗ψNh )[n] and
replace other values by zeroes.

formula,

g̃(t) =
1

τ

∑
n∈Z

q̃MB [n]ϕ
(
t− n

τ

)
, (15)

where the reconstruction kernel ϕ(t) is defined via its Fourier trans-
form such that ϕ̂(ω) = 1(−π,π) (ω). However, just like the scaling
function in Meyer wavelet, ϕ̂(ω) is non-zero when π < |ω| 6 τ .
Additionally we require that ϕ(t) belongs to the Schwartz space
S(R) and has maximum ϕ(0) = 1. The following lemma will help
us to provide the estimate for the reconstruction error.

Lemma 1. For εg[n] = g[n] − y[n] and ε̃q[n] which is obtained
via Algorithm 1, provided that h and τ are chosen according to
hr := 2

⌈
‖∂2ψNh ‖L1

⌉
and (14), respectively, and ϕ(t) is a valid

interpolation kernel (cf. (15)), we have

1

τ

∣∣∣∣∣∑
n∈Z

(εg[n]− ε̃q[n])ϕ
(
t− n

τ

)∣∣∣∣∣ < 1

τ
M(c, ϕ, ψNh ), (16)

where M(c, ϕ, ψNh ) is a constant dependent on SO parameter c (cf.
Def. 1) and on the choice of kernels ϕ and ψNh .

We omit the proof due to space limitations. Essentially, this
lemma tells that the error |εg[n]− ε̃q[n]| between true and recovered
residual has the contribution of only O(1/τ) to the overall recon-
struction error. Finally, we state the main result of this paper (again,
the proof is omitted due to space limitation).

Theorem 1 (Error Bound for One-Bit Unlimited Sampling). Let g ∈
PWπ (R) with SO parameter c (cf. Def. 1) and βg > ‖g‖L∞ . Let
q[n], n ∈ Z, in (3) be the one-bit modulo samples of g(t) with
oversampling rate τ > 1. Let ψNh [n], n ∈ Z, be the samples of
the smoothing kernel ψNh (t) defined in (7) with sampling rate hr :=
2
⌈
‖∂2ψNh ‖L1

⌉
and let ϕ(t) be the reconstruction kernel as in (15).

Then, a sufficient condition for approximate recovery of g̃(t) from
q[n] (up to additive multiples of 2) is given by (14). Under these
conditions, Algorithm 1 yields the reconstruction error

|g(t)− g̃(t)| 6 1

τ

(
‖∂ϕ‖L1 +M(c, ϕ, ψNh )

)
, (17)

where M(c, ϕ, ψNh ) is a constant described in Lemma 1.

We complement theoretical results with numerical demonstra-
tion in Fig. 3.

4. FUTURE WORK AND CONCLUSIONS

As a natural extension of our research, we plan to incorporate higher
order Σ∆ in our sampling architecture and higher order finite differ-
ences in the recovery algorithm. Similar to [1], considering ∆Nq[n]
with higher N will hopefully allow to discard the norm estimate of
g in the sufficiency condition for the oversampling rate τ , thus, mak-
ing our one-bit sampling architecture unlimited in a broader sense.
Also our sufficient condition seems to have room for improvement
and further research is needed to investigate sharper recovery condi-
tions.

We conclude this paper by emphasizing the fact that we provided
a new step towards making the sampling theory for self-reset ADCs
practically feasible. Namely, we coupled modulo sampling with dis-
cretization in range via one-bit Σ∆ quantization, thus, overcoming
the limitation on dynamic range inherent to conventional one-bit Σ∆
schemes. Our results establish a sufficient condition for the recovery
of bandlimited signals from one-bit modulo samples as well as pro-
vide a recovery algorithm and a bound on the reconstruction error.

This research was supported by the DFG CRC TRR109, Discretization in
Geometry and Dynamics.
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