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ABSTRACT

Fourier descriptors are used to parametrically represent closed con-
tours. In practice, a finite set of Fourier descriptors can model a large
class of smooth contours. In this paper, we propose a method for es-
timating the Fourier descriptors of a given contour from its partial
samples. We take a sampling-theoretic approach to model the x and
y coordinate functions of the shape and express them as a sum of
weighted complex exponentials, which belong to the class of finite-
rate-of-innovation (FRI) signals. The weights represent the Fourier
descriptors of the shape. We use the FRI framework to estimate the
shape parameters reliably from noisy and partial measurements. We
model non-uniformities in sampling using the sampling jitter model
and employ a prefiltering process to reduce the effect of measure-
ment noise and jitter. The average sampling interval is estimated by
a block annihilating filter, which is then followed by the estimation
of Fourier descriptors using least-squares fitting. We demonstrate
the robustness of the proposed algorithm to noise and sampling jit-
ter. Monte Carlo performance analysis shows that the variances of
the estimators are close to the Cramér-Rao lower bounds. We present
results for outlining shapes in synthetic as well as real images.

Index Terms— Fourier descriptors, finite-rate-of-innovation
signals, block annihilation, parametric curves.

1. INTRODUCTION

Shape reconstruction or shape parameterization is crucial in numer-
ous image processing, computer vision, and pattern recognition ap-
plications. Shape parameters are used as features for object matching
and classification [1], and they also provide a succinct representation
of the data. One such parameterization of shapes with closed con-
tours is given by Fourier descriptors [2]. Fourier descriptors (FDs) of
a closed curve C': {x(t), y(t)}, which may represent the boundary
of an object in an image are the coefficients in the Fourier series ex-
pansion of an analytic function constructed as s¢ (t) = z(t) +jy(t):

sc(t) = Z Ch ejkt, ¢, € C. (1)
keZ

A truncated set of coefficients {ck}szf X approximates sc (t) to an
order K and this finite set of coefficients represents a broad class of
smooth shapes. Given FDs of a closed contour, the FDs of translated,
rotated, sheared, or scaled versions of the contour can be readily ob-
tained as several interesting and simple relations exist between the
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Fig. 1: [Colour online] Outlining (curves in red) of tumours in T1
contrast enhanced brain MRI [9, 10] and images of melanoma [11]
using the proposed method. Approximation near the regions having
high curvature gets better with increasing model order.

geometry of shapes and algebraic properties of the FDs [3]. Ow-
ing to such attractive features, FDs have found several applications
such as in shape matching and discrimination in the field of pat-
tern recognition [4—6] and image processing for medicine and biol-
ogy [7]. An Illustration of outlining of tumours using the proposed
method is shown in Fig. 1. Many parametric models including FDs
rely on inverse transforms for reconstruction, often requiring a com-
plete set of measurements on the closed contour, which might not
be available due to poor pre-processing, low resolution, occlusion
etc. Clustering-based techniques such as Hough transform [8] are
robust to outliers, but they are computationally intensive. The com-
plexity of such algorithms increases significantly as the order K in-
creases. In practice, for real images, shapes are represented by points
drawn from the contour of an object. Generally, an edge detection
algorithm is applied on the grey-scale image and a set of uniformly-
spaced pixels on the edge location are selected as points on the con-
tour. Since images are discretized spatially, the selected pixels may
not correspond to uniform samples of the contour resulting in what
is known as sampling jitter.

This Paper: We propose a novel finite-rate-of-innovation (FRI)
signal [12] model for closed contours and regard FDs as the degrees
of freedom of the signal in (1). A finite set of FDs can characterize a
large class of smooth closed contours, which implies that sc(¢) has
finite number of degrees of freedom and hence can be modelled as
an FRI signal as shown in Section 2. As a particular case, for K =1,
the curve C represents an ellipse. We have shown in [13] that the
FRI modelling of ellipse is a robust approach for its representation
and reconstruction as compared with several state-of-the-art ellipse
fitting techniques. Complex shapes of higher orders can be approxi-
mated by taking a larger set of coefficients by increasing the value of
K, thus generalizing the ellipse model. The fact that, in the absence
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of noise, an FRI signal with K degrees of freedom is completely
represented by a minimum of 2K measurements [12] is significant
as it enables one to represent an FRI contour with partially available
sample points. In Section 3, we employ high-resolution spectral es-
timation techniques [14], in particular, the annihilating filter [15] to
estimate the parameters. Also, in the presence of noise, we perform
prefiltering of the noisy samples before estimating the FDs. In our
earlier work, we showed that prefiltering the samples with a lowpass
kernel reduces the variance of the random amplitude modulation on
the FDs caused by the jitter [13]. In Section 4, we analyze the noise
robustness of the proposed method and show that the variances in
the estimated parameters meet the corresponding Cramér-Rao lower
bounds (CRLBs). The squared bias in the estimation of parameters
is as low as —60 dB at SNR of 0 dB. We also present the performance
of the proposed method on synthetic curves as well as real images.

Other FRI Models for Curve Fitting: Recently, Pan et al. [16]
proposed a method to sample and reconstruct curves by extending
the FRI principle to curves in 2D. The authors showed that the finite
coefficients of a parameterized mask function annihilate the Fourier
transform of the derivative of the edge image. The curve representa-
tion is implicit and relies on the level-set of a mask function. Ongie
and Jacob extended the formulation in [16] to accommodate nat-
ural images along with robust reconstruction techniques, and suc-
cessfully demonstrated super-resolution magnetic resonance imag-
ing (MRI) as an application [17-19]. If a parametric curve is oc-
cluded, the mask function based method would reconstruct only a
part of the curve that is not occluded along with the boundary of
the occluding object. Hence, reconstruction of closed contours from
partial measurements is not possible. Therefore, we choose to ex-
plicitly model the contours as FRI objects with sampling interval
and FDs as parameters. Thus, the measurement model and the sig-
nal model in the proposed technique are different from that of [16].
On the other hand, the proposed method can only handle one curve
at a time unlike the approaches presented in [16—19].

2. FOURIER DESCRIPTORS ARE FRI CURVES

Consider the explicit parametric representation of a curve, which is
the closed boundary of a shape represented as C' : {z(t), y(t)} using
Fourier descriptors as in (1) with a finite model order K. Uniform
samples of  and y coordinates of C, sampled at an interval 7" result
in a sum of weighted complex exponentials (SWCE):

(W)i=nr = Y ax " and  y(E)lmnr = Y, Be T, ()
k=—K k=—K

respectively. We enforce the constraints ay = o), and B = -7,
to ensure real x and purely imaginary y coordinate functions so
that our model agrees with the standard FD model in (1). Fur-
ther, a combination of the weights cx = ax +jBk, V k € K =
{-K,-K + 1, K — 1,K} gives the Fourier descriptors of the
curve C. The parameter set ® = [T c_x - co -+ Ckx] com-
pletely describes the curve C'. Suppose we obtain N noisy, or-
dered measurements {Z(nT"), g(nT)}:f:l with NT < 27 such that
Z(nT) = z(nT) +wz(n) and g(nT) = y(nT) + wy(n), where the
sequences {wz (n)}i , and {wy (n)}i , are modelled as indepen-
dent and identically distributed (i.i.d.) Gaussian noise samples with
zero mean and variance o2, We seek to estimate the parameter set
© from the full or partial set of measurements {&(nT),j(nT)}.

3. PARAMETER ESTIMATION OF FRI CURVES

Sampling and reconstruction of FRI signals, in particular, a stream of
Dirac impulses proposed by Vetterli et al. [12] has been extended to
a stream of periodic and aperiodic pulses by Tur et al. [20] with ultra-
sound imaging as an application. Subsequently, FRI signal sampling
has found applications in super-resolution imaging [16, 17,21-23]
and curve fitting [13]. In these applications, the measurements are
transformed into a domain such that the signal is completely charac-
terized by a SWCE, where the exponents and weights form the pa-
rameter set that has to be estimated. The signal models in (2) are FRI
signals with a total of 2( K + 1) number of parameters and they are
already in the form of a SWCE, where T is the unknown sampling
interval. Robust estimation of 7" by employing block annihilation
allows for estimation of the weights {ax, Ok } using a least-squares
minimization approach.

3.1. Estimation of Sampling Interval

The annihilating filter or Prony’s algorithm [15] is a HRSE method
that is used to estimate the parameters of a SWCE signal instead
of nonlinear least-squares minimization. The authors in [13] chose
either x(nT') or y(nT"), whichever has a higher signal-to-noise ra-
tio (SNR), as input to the annihilating filter. In order to make use
of all the available measurements, we employ the block annihila-
tion scheme originally proposed in [24]. It ensures unbiased esti-
mation of 7" using both the  and y measurements. We found that
this also gives a more robust estimate as compared with the method
used in [13]. We obtain two sequences with the common complex
exponential support in z(nT') and y(nT). We are interested in a
causal, finite-impulse-response (FIR) filter ~(n) of the order 2K +1,

K .
with a Z-transform H(z) = T[] (1-e*T2T). The filter outputs
k=—K

(x*h)(n)and (y*h)(n) vanish for (2K +1) <n< N-(2K+1),
i.e., the filter A(n) annihilates the sequences z(nT") and y(nT).
The zeros of the filter are {ejkT}kK}K, from which {kT}i;K have
to be computed, whose smallest non-zero positive value 1s taken as
the estimated sampling interval. To determine the filter, the convo-
lution is written in the matrix form as Xh = 0 and Yh = 0, where
X and Y are the convolution matrices constructed from {x(nT")}
and {y(nT)}, respectively. We construct a block matrix U and find
acommon h = [hg hy -~ hox]" that lies in the null space of both X

and Y:
X

Y

In the presence of noise, U may end up being full rank and perfect
annihilation might not be possible. In this case, we first denoise the
samples and find an approximate solution to (3) as:

Uh:[ ]h:O. 3)

arg min |[Uh]|3 subject to |[h||3 = 1.
h

We solve for h using a Yule-Walker solver or by taking the right
singular vector corresponding to the smallest singular value of U.

3.2. Denoising Using Prefiltering

For robust estimation of the sampling interval, we use a lowpass filter
to denoise the samples and consequently identify the best annihilat-
ing filter in the approximate null space of U. A lowpass filter also
reduces the effect of sampling jitter in the case of nonuniform sam-
pling [13]. For a curve of order K, the curve-specific information is
available only in the interval [- KT, KT'] and we wish to suppress
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the samples outside this interval. Consider an M -tap lowpass filter
f(nT) with a cut-off frequency close to KT'. The signal Z(nT') is
filtered using f(nT') resulting in:

K . .
(@*f)(n) » aoF(0)+ > [F(KT)a " T+ F (kT e 7],
k=1
M-1 ,
where F(w) = > f(n)e ™™ is the frequency response of the low-
n=0

pass filter. We observe that the lowpass filtering scales the k™ Fourier
descriptor by a factor of F'(kT") while suppressing the noise. To re-
liably recover the weights, we require the scaling factors to satisfy
F(kT) ~ 1. Also, larger the filter length M, the better is the de-
noising for a fixed cutoff frequency as the frequency response of the
lowpass filter rolls off quickly. However, this reduces the effective
number of available samples in the SWCE form for the estimation of
the sampling interval. Hence, there is a trade-off between the filter
length and the cutoff frequency to ensure optimal denoising. In the
simulation results presented in this paper, we have used the Tukey

window with parameter 0.99 and length M = [%J

3.3. Estimation of Fourier Descriptors

The coefficients a = [a-x @-g41 - ax-1 ax] and b =
[B-x B-K+1 - Br-1 BK]T, which form the FDs are obtained
as the least-squares solution to Ea = x and Eb = y, where X and
¥ are the vectors formed using the denoised sequences {Z(n)} and
{g(n)}, respectively, and E is a Vandermonde matrix constructed
as follows:

KT T iT KT
e e 1 € e
_j2KT _joT joT 2KT
e e 1 € e
E =
JNKT jNT iNT INKT
e e 1 € e’

We refer to the proposed technique as the FRI-FD method.

4. EXPERIMENTAL RESULTS

4.1. Noise Robustness

We present the performance analysis of the proposed method in the
presence of noise. Consider the signal model:

x=Ea+w, y=Eb+w,

where the matrix E depends on the parameter 7" and w ~ A (0, o°T).
We compute the mean-squared error (MSE) in the estimation of a,
b, and T". Consider samples from a curve of model order K = 1
with parameters 7' = 0.01, oo = 2, a1 = a1 = 8, fo = 3, and
B1 = —p-1 = 7. A total of N = 629 noisy samples are generated
and denoised using a lowpass filter, a Tukey window with parameter
0.99 and cutoff frequency of 0.015 radians. For each SNR, the MSE
values are averaged over 5000 independent noise realizations. The

N
SNR is computed as ~5 > (|IE(TLT)|2 + |y(nT)|2).
n=1
To compute the Cramér-Rao lower bound on the variance of the
parameter estimators, we construct the Fisher information matrix of
the parameters © = [T 0,]" as

0%20(z;©)  9%4(z;©)

1(®) = _E[a%(ﬂ @)] -_F T2 805TOT
- 902 - 0%0(z;©)  9%0(z;0) |’

0T 0T 9659657

MSE (T VAR (T BIAS? (T
- (T) 60 (T) 40 (7)
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Fig. 2: Bias, variance, and MSE of the estimated parameters of a
closed contour of model order K = 1. Both axes are in dB scale. The
results are obtained by averaging estimates from 5000 independent
Monte Carlo realizations. Bias values for the other parameters were
found to be less than —70 dB.

where ¢(z; ©) is the likelihood function of the measurements z =
[x y]" corrupted by zero-mean, additive white Gaussian noise with
variance o and 0p = [a—k - a0 - i B-k =+ Po - Bk ]T. The en-
tries of the Fisher matrix are computed as:

2 e 1 )
g|2Z4%8) | “lpap here B - [E 0],
| 90,00," | o2 0 E
—aQZ(Z'®)< -1 NT iknT K iknT
]E ) - JEM k Jjkn
a2 S R
[ 92)( . 1 _1 NT. K )
o[22 £l (5 )
B n=1L k=—K
[0%0(2;©)] -1 2

M=z

ElZ25 =) (2 =
orz | o2

2
K ) K )
S agiknedP T | S gpiknedRn T .
" kK

n=11L

The CRLBs of the variances of unbiased estimators of parameters
are the corresponding diagonal entries of the inverse of I(®). Fig-
ures 2(a)-(c) show bias, variance, and MSE in the estimation of T.
It is observed that the squared bias of the estimator is as low as —60
dB at SNR of 0 dB and the variance almost meets the CRLB around
SNR of 20 dB. The variances in the estimation of FDs are shown
in Figs. 2(d)-(i). It has been observed that the bias curves for the
FDs follow the same trend as that of T'. Accuracy of estimates of the
weights is dependent on the estimation of the sampling interval and
hence, the variances of estimators of all the FDs meet the CRLBs at
SNRs where the sampling interval is accurately estimated.

4.2. Synthetic Curves and Real Images

We consider reconstruction of shape boundaries from noisy mea-
surements. Figures 3(a)-(f) show the reconstruction of closed con-
tours of order K = 2 with the full and partial (60%) set of mea-
surements used for parameter estimation. Similarly, Figs. 3(g)-(1)
show the reconstructions for a contour of order K = 3. In both the
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(i) M = 0.6N, FRI-FD (1) M = 0.6, direct method

FRI-FD Direct method

Fig. 3: [Colour online] The reconstruction of contours of order (a)-(f) K = 2 and (g)-(1) K = 3 at SNR = 20 dB. The first row shows
the reconstructions obtained using the full set of measurements, whereas the second and third rows show reconstruction using partial set of
measurements. For both FRI-FD and direct methods, the reconstructed contours from 50 noise realizations are overlaid.

(a) K =100,N =340 (b) K =68, N =505 (c) K =25, N =345

Fig. 4: [Colour online] Illustration of FRI-FD to outline (in red)
closed contours of different shapes. More complex contours can be
approximated by using a larger model order.

cases, N = 126 noisy samples at SNR of 20 dB are generated with
T = 0.05. The second and third rows correspond to reconstruction
using partial samples that are taken from two different regions of
the contours. It is observed that if the partial samples are not taken
from regions with a high curvature, the proposed method fails to re-
liably reconstruct the contour as the model order must be high for
such regions and correspondingly, more samples must be acquired
(see Fig. 3(i)). The second and fourth columns show the results for
reconstruction performed using the direct method, i.e., by Fourier
inversion of FDs that are obtained using the full or partial set of mea-
surements. The direct method is able to give a reliable reconstruc-
tion only if the FDs are obtained using the full set of measurements.
Modifications to the direct method have been made to accommodate
for missing samples, but the performance is reliable only if the per-

centage of missing samples is less than 20% and requires a priori
estimation of [NV [25]. Figure 1 in Section 1 shows reconstruction re-
sults on real images (brain MRI and melanoma) obtained from data
sets in [9-11], which contain ordered points that are handpicked on
the boundaries of tumours. In the case of unavailability of the bound-
ary and ordering information, we employ Canny’s algorithm [26] to
detect the edge contours and approximate solutions to the Travel-
ling Salesman Problem for ordering the samples. Reconstruction
results on some of the real images using a full set of measurements
are shown in Fig. 4.

5. CONCLUSIONS

We proposed the FRI signal model for characterizing smooth closed
contours with Fourier descriptors as parameters. This generalizes
the ellipse fitting model in [13] to a larger class of smooth contours.
Since the contours are modelled as FRI signals, it facilitates com-
putation of Fourier descriptors of a shape from partial or incomplete
measurements of the coordinate functions. Application of the block
annihilating filter, which uses both the = and y coordinates that have
a common set of frequencies (or common support), provides robust
estimation of the sampling interval. Fourier descriptors are then es-
timated by a least-squares fit. We have shown that the variances of
the estimates meet the corresponding Cramér-Rao lower bounds at
SNRs above 20 dB. We also demonstrate applications of the pro-
posed FRI-FD method to reliably reconstruct the shape contours on
some real images.
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