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ABSTRACT
Population Monte Carlo (PMC) algorithms are a family of
adaptive importance sampling (AIS) methods for approximat-
ing integrals in Bayesian inference. In this paper, we pro-
pose a novel PMC algorithm that combines recent advances
in the AIS and the optimization literatures. In such a way, the
proposal densities are adapted according to the past weighted
samples via a local resampling that preserves the diversity,
but we also exploit the geometry of the targeted distribution.
A scaled Langevin strategy with Newton-based scaling met-
ric is retained for this purpose, allowing to adapt jointly the
means and the covariances of the proposals, without needing
to tune any extra parameter. The performance of the proposed
technique is clearly superior in two numerical examples at the
cost of a reasonable computational complexity increment.

Index Terms— Importance sampling, Monte Carlo meth-
ods, population Monte Carlo, Langevin dynamics, Newton
algorithm, stochastic optimization.

1. INTRODUCTION

In many problems of science and engineering, the goal is in
inferring some unknown parameter from a set of data. In
Bayesian inference, a posterior distribution of the unknown
parameter conditioned to the data is built. Unfortunately, for
most applications of interest, the posterior is intractable and
must be approximated. Importance sampling (IS) is a popu-
lar family of Monte Carlo methods [1, 2]. Random samples
are simulated from a proposal distribution and weighted ac-
cordingly so estimators of moments of the posterior distribu-
tion can be obtained. However it is a challenging problem
to choose a good proposal in advance, and adaptive IS (AIS)
procedures must be performed [3, 4].

AIS algorithms have received a particular attention in the
recent years due to their ability to iteratively improve the pro-
posal, and hence to increase the performance of IS. AIS can
be applied to a large class of problems due to its flexibility
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and weak requirements [4, 5]. The population Monte Carlo
(PMC) algorithms are a family of AIS algorithms [6, 7, 8, 9]
that implement a resampling procedure for adapting the loca-
tion parameters proposal pdfs from previous weighted sam-
ples. However, the state-of-the-art PMC methods suffer from
two known limitations. First, due to the resampling step, the
path degeneracy endangers the diversity in the exploration of
the space. The LR-PMC in [9] reduces this problem by resam-
pling locally among disjoint sets of samples at the expense
of worsening the local exploration w.r.t. a global resampling
(see more details in [9]). Second, most of PMC methods only
adapt the location parameter but are unable to fit the scale pa-
rameter.

Recent works in the literature have investigated the use
of gradient steps in the proposal adaptation. For instance,
[10] presents an AIS without resampling that exploits the
gradient and the Hessian and introduces some artificial re-
pulsion among proposals. In [11, 12], the proposal mean is
adapted using one iteration of the unadjusted Langevin algo-
rithm (ULA) [13] initialized in the samples values. In these
methods, the covariance is also adapted, using autocorrelation
of past samples [11], or second-order information [10, 12].
Langevin-based schemes have also been considered as accel-
eration strategies in MCMC algorithms [14, 15, 16]. The idea
is to combine ULA with a Metropolis-Hastings step, giving
rise to the so-called Metropolis adjusted Langevin algorithm
(MALA). The advantage is that a sample arising from the
proposal is more likely drawn from a highly probable region,
which is beneficial to the acceptance rate. The performance
of MALA can be improved by introducing in the drift term
a scaling matrix depending on the current sample value, in
order to adapt the proposal to the local structure of the target
density [17, 18, 19]. Several strategies have been investigated
for the construction of the scaling matrix in MALA, relying
on second-order information [20, 18], Fisher metric [17] or
majorization-minimization strategy [19].

In this work, we propose a new scaled Langevin PMC
(SL-PMC) approach, where the proposals are adjusted using
a ULA step with scaling metric adapted to the sample values
resulting from a local resampling strategy. In contrast to the
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aforementioned works, here the mean and covariance adapta-
tion are performed jointly, with the advantage of fitting the
proposal distributions locally, boosting the exploration and
increasing the performance. A Newton strategy, associated
to a backtracking linesearch is proposed for the construction
of the Langevin drift term. We show on two sets of numeri-
cal examples that this novel methodology enhances the local
adaptation without endangering the diversity of the proposals.

The rest of the paper is structured as follows. Section 2
introduces the problem setting, the AIS framework, and the
Langevin diffusion. In Section 3, we present the proposed
method. Finally, we show some numerical examples in Sec-
tion 4 and conclude in Section 5.

2. MOTIVATING FRAMEWORK AND
BACKGROUND

2.1. Bayesian inference

Let us consider a vector of unknowns x ∈ Rdx that is related
to a set of data y ∈ Rdy through a statistical model repre-
sented by the likelihood function `(y|x). Prior information
on x is contained in p0(x). Then, the posterior distribution
(also called target) is represented by

π̃(x|y) =
`(y|x)p0(x)

Z(y)
∝ π(x|y), (1)

where π(x|y) = `(y|x)p0(x) is a non-negative function, and
Z(y) =

∫
π(x|y)dx.1 In many applications, the goal con-

sists in computing a moment w.r.t. the posterior distribution
as in

I =

∫
h(x)π̃(x)dx =

1

Z

∫
h(x)π(x)dx, (2)

where h is any integrable function w.r.t. π̃(x). However, in
many scenarios, Eq. (2) cannot be computed because either
the integral is intractable and/or Z is not available.

2.2. Population Monte Carlo

Population Monte Carlo (PMC) is a family of adaptive im-
portance sampling (AIS) algorithms for the approximation of
integrals of the form of Eq. (2). In the following, we briefly
describe the basic importance sampling (IS) method and a
state-of-the-art PMC algorithm.

2.2.1. Importance sampling (IS)

In its basic version, IS simulates K samples as xk ∼ q(x),
k = 1, ...,K, where q(x) is the proposal distribution. An
importance weight is assigned to each sample as wk = π(xk)

q(xk)
,

k = 1, ...,K. Under mild conditions, the integral of Eq. (2)

1We now drop y in Z, π(x), and π̃(x) in order to alleviate the notation.

can be approximated by the (unbiased) unnormalized IS
(UIS) estimator Î = 1

KZ

∑K
k=1 wkh(xk), if Z is known.

In the general case where Z is unknown, the (consistent)
self-normalized IS (SNIS) estimator is implemented

Ĩ =

K∑
k=1

w̄kh(xk). (3)

It is well known that the optimal proposal for the UIS esti-
mator is q(x) ∝ |h(x)|π(x) [1, 2]. However, since it is usu-
ally impossible to know in advance the best proposal, adaptive
mechanisms are employed.

2.2.2. Deterministic mixture PMC (DM-PMC)

The PMC family of algorithms is a popular implementation of
the adaptive IS (AIS) method. The framework was proposed
in [6], and arguably, its most important feature is the use of re-
sampling procedures for adapting the proposal pdfs. The DM-
PMC [9] is a recent PMC algorithm with high performance
that will serve as basis for our description here and also for the
numerical examples. In DM-PMC, the parameters of N pro-
posal densities are initialized. In particular, the initial location
parameters {µ(1)

n }Nn=1 will be adapted, while the parameters
{Cn}Nn=1 are static (e.g., for Gaussian proposals, the location
parameters are the means and the static parameters are the co-
variance matrices). At each iteration t, exactly K samples are
simulated from each proposal q(t)n (x). The NK samples re-
ceive an IS weight, and the weights are normalized. Finally,
theN location parameters for the next iteration, {µ(t+1)

n }Nn=1,
are simulated from the set of NK samples according to a re-
sampling procedure. The DM-PMC is an advanced algorithm
that outperforms the standard PMC in most scenarios due to
more stable estimators (see [21]) and a resampling step that
better preserves the diversity. The challenge of this step is
in selecting the N next location parameters of the proposals
from a pool of NK samples. Three strategies have been pro-
posed for the generic DM-PMC [9, 22] with the names of
global (GR-PMC), local (LR-PMC), and partial (PR-PMC)
resampling PMC, depending on the type of resampling they
implement. See more information in [22, Fig. 1].

2.3. Langevin diffusion scheme

A Q-dimensional Langevin diffusion [14] is a continuous-
time Markov process (x(t))t≥0 ∈ Rdx defined through the
following stochastic differential equation:

(∀t ≥ 0) dx(t) = b(x(t))dt+ A1/2(x(t))dB(t), (4)

with (B(t))t≥0 ∈ Rdx a Brownian motion, and for every x ∈
Rdx , A(x) ∈ Rdx×dx a symmetric definite positive (SDP)
scaling matrix. The drift term b(x) = (bi(x))dxi=1 is related
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to the target density (assumed to be differentiable) and to the
scaling matrix through

bi(x) =
1

2

dx∑
j=1

Ai,j(x)
∂ log π(x)

∂xj
+

|A(x)| 12
Q∑
j=1

∂

∂xj

(
Ai,j(x)|A(x)|− 1

2

)
, (5)

with 1 ≤ i ≤ dx. The Langevin diffusion process has station-
ary distribution π̃. Using the Euler’s discretization scheme
with stepsize θ yields ULA [13, 23], defined, for every t ∈ N
as

x(t+1) = x(t) + θb(x(t)) +
√
θA1/2(x(t))ω(t+1), (6)

where
(
ω(t)

)
t∈N ∈ Rdx are i.i.d. realizations of zero-mean

Gaussian noise.

3. SCALED LANGEVIN POPULATION MONTE
CARLO

3.1. Proposed algorithm

We are now ready to present our new SL-PMC algorithm in
Table 1. We initialize the N proposals with location parame-
ters {µ(1)

n }Nn=1, scale parameters {Σ(1)
n }Nn=1, and other static

parameters {νn}Nn=1. For T iterations, we proceed as fol-
lows. In step2(a), K samples are simulated from each pro-
posal. An IS weight is associated to each sample in step 2(b)
(note that we use the deterministic mixture weight with whole
mixture of proposals in the denominator [21]). In step 2(c),
the local resampling of [9] is implemented in order to select
the set of parameters {µ̃(t+1)

n }Nn=1. In particular, the n-th
parameter µ̃(t+1)

n is resampled from the set of K samples
generated by the proposal located at µ(t)

n , i.e., from the set
X (t)
n = {x(t)

n,1, ...,x
(t)
n,K}with associated probabilities w̄(t)

n,k =

w
(t)
n,k∑K

`=1 w
(t)
n,`

, k = 1, . . . ,K. Note that exactly one sample from

each proposal survives from iteration t to t + 1, which pre-
serves the diversity and the local exploration of next step. In
step 2(d), the mean of the proposal density at next iteration is
updated using

µ(t+1)
n = µ̃(t+1)

n +
1

2
θ(t+1)
n A(µ̃(t+1)

n )∇ log π(µ̃(t+1)
n ), (7)

where A(µ̃
(t+1)
n ) is an SDP matrix of Rdx×dx . The scaled

gradient term in (7) can be understood as a discretization of
(5) under the assumption of a locally constant curvature [19].
Like in the ULA scheme (6), the covariance matrix of the
proposal density is adapted according to

Σ(t+1)
n = θ(t+1)

n A(µ̃(t+1)
n ). (8)

After T iterations, we deliver the NKT weighted samples
that can be used to build the estimators of Section 2.2.1.

Table 1. SL-PMC algorithm.

1. [Initialization]: Set σ > 0, (N,K, T ) ∈ N+, {νn}Nn=1. For

n = 1, . . . , N , select the initial adaptive parameters µ(1)
n ∈

Rdx and Σ
(1)
n = σ2Idx .

2. [For t = 1 to T ]:

(a) Draw K samples from each proposal pdf,

x
(t)
n,k ∼ q

(t)
n (x;µ

(t)
n ,Σ

(t)
n ,νn) (9)

with n = 1, . . . , N , and k = 1, . . . ,K.

(b) Compute the importance weights,

w
(t)
n,k =

π(x
(t)
n,k)

1
N

∑N
i=1 q

(t)
i (x

(t)
n,k)

. (10)

(c) Resample N location parameters {µ̃(t+1)
n }Nn=1 from the

set of NK weighted samples of iteration t using the local
resampling strategy.

(d) Adapt the proposal parameters {(µ(t+1)
n ,Σ

(t+1)
n )}Nn=1

according to (7)-(8).

3. [Output, t = T ]: Return the pairs {x(t)
n,k, w

(t)
n,k}, for n =

1, . . . , N , k = 1, . . . ,K and t = 1, . . . , T .

3.2. Parameters setting

The parameters (θ,A(·)) play an important role in our
method, as θ determines the length of the proposed jumps,
whereas the scale matrix A(·) controls their direction. In the
following, we propose a simple and efficient strategy for the
setting of these values.

3.2.1. Scaling matrix.

In order to better infer the local curvature of the target, we
propose to choose the scaling metric in our Langevin-based
scheme relying on the information of the Hessian of log π:

A(µ̃(t+1)
n ) =

(
−∇2 log π(µ̃(t+1)

n )
)−1

. (11)

Note that, despite the complexity increase resulting from the
inversion step in (11), such scaling strategy has been ob-
served to yield very satisfactory performance in the context
of MALA [20, 18]. It has also been employed with success
for the covariance adaptation in PMC methods [12, 10]. A
difficulty is that for general densities π̃, the log-concavity
assumption is not necessarily fulfilled and numerical issues
may arise in the inversion of the Hessian matrix. We pro-
pose to overcome this issue by using µ(t+1)

n = µ̃
(t+1)
n and

Σ
(t+1)
n = σ2Idx , for all n ∈ {1, . . . , N} when the matrix

(11) is not well-defined. Let us emphasize that, in our prac-
tical tests, the value retained for σ does not seem to have a
critical role in the performance of our method (in contrast
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to standard DM-PMC where this parameter choice may be
sensitive).

3.2.2. Stepsize tuning.

If matrix A(µ̃
(t+1)
n ) is well defined, there still remains to set

the associated stepsize value θ(t+1)
n . We propose to resort

to a simple backtracking scheme. Starting with unit stepsize
value, we reduce the stepsize by factor τ = 1/2 until the
condition below is met:

π(µ̃(t+1)
n + θ(t+1)

n A(µ̃(t+1)
n )∇ log π(µ̃(t+1)

n )) ≥ π(µ̃(t+1)
n ).

Note that this method was observed in our experiments to lead
to better stability and exploration performance than the de-
creasing stepsize rule retained in [11].

4. NUMERICAL RESULTS

4.1. Mixture of Gaussians

Let us consider the bivariate multimodal target pdf given by
π̃(x) = 1

5

∑5
i=1N (x; γi,Ci) for x ∈ R2, with means γ1 =

[−10,−10]>, γ2 = [0, 16]>, γ3 = [13, 8]>, γ4 = [−9, 7]>,
γ5 = [14,−4]>, and covariance matrices C1 = [5, 2; 2, 5],
C2 = [2, −1.3;−1.3, 2], C3 = [2, 0.8; 0.8, 2], C4 =
[3, 1.2; 1.2, 0.5] and C5 = [0.2, −0.1;−0.1, 0.2]. The goal
is the approximation of the target mean Eπ̃[X] = [2.4, 3.4]

>,
the second moment Eπ̃[X2] = [101.04, 98.94]

>, and the nor-
malizing constant Z = 1. We compare the performance of
the novel SL-PMC algorithm with GR-PMC and LR-PMC,
two variants of the DM-PMC algorithm [9]. For GR-PMC
and LR-PMC, we set proposal covariances Σn = σ2Idx , with
σ ∈ {1, 3, 5}, while we take σ = 5 in SL-PMC. All methods
are run with N = 50 proposals (randomly initialized in the
square [−4, 4] × [−4, 4]), T = 20 iterations, and K = 20
samples per proposal and iteration. Table 2 shows the relative
mean square error (RMSE) of the AIS estimators, averaging
the results of the second half of iterations. The novel SL-PMC
outperforms the best setup of the DM-PMC by roughly an or-
der of magnitude in the estimation of the three quantities.

GR-PMC LR-PMC SL-PMC
σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5

Z 0.6419 42.1047 0.0289 0.2807 0.1309 0.1522 0.0014
Eπ̃ [X] 41.3552 8.0010 0.3583 5.4810 1.6225 0.4860 0.0238
Eπ̃ [X

2] 12.0858 10.0200 0.5253 6.5815 2.1486 0.6844 0.0556

Table 2. Example 4.1. Relative MSE in the estimation of Z,
Eπ̃[X], and Eπ̃[X2].

4.2. High-dimensional banana-shaped distribution

Let us consider the random variable (r.v.) X ∈ Rdx , dx ≥ 2.
This r.v. is a transformation from dx-dimensional multivari-
ate Gaussian X̄ ∼ N (x; 0dx ,C) with C = diag(c2, 1, ..., 1).

The transformed r.v. is computed as Xj = X̄j , j ∈
{1, ..., dx} \ 2, and X2 = X̄2 − b(X̄2

1 − c2), with c = 1 and
b = 3. This transformation leads to a complicated banana-
shaped distribution with uncorrelated components [24, 25].
Figure 1 shows the MSE in the estimation of Eπ̃[X] for dif-
ferent dimensions dx ∈ {2, 5, 10, 15, 20, 30, 40, 50}. In all
methods, we set N = 50, K = 20 and T = 20. For both
variants GR-PMC and LR-PMC, we display the performance
with proposal covariances Σn = σ2Idx , with σ ∈ {1, 3} (the
performance with σ = 5 is much worse and is not displayed).
In general, the performance of all methods worsens when
the dimension grows. Note that the SL-PMC outperforms
the DM-PMC in all dimensions, keeping a substantial gap in
terms of MSE.

0 5 10 15 20 25 30 35 40 45 50
10-3

10-2

10-1

100

101

102

M
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E

Fig. 1. Example 4.2. MSE in the estimation of Eπ̃[X] of the
banana-shaped distribution versus the dimension dx.

5. CONCLUSIONS

Population Monte Carlo algorithms are flexible adaptive
importance sampling techniques for approximating distri-
butions. Current state-of-the-art algorithms do not exploit
enough the geometry of the posterior. In this paper, we have
proposed a Langevin-based strategy with position dependent
scaling metric, allowing to adapt jointly the means and the
covariances of the proposals by accounting for second-order
information about the target. This novel SL-PMC algo-
rithm extracts the features of competitive PMC methods,
adding new features coming from the optimization litera-
ture. Our method shows superior performance, especially in
high-dimensional distributions, without the need of any extra
parameter setting.
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