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ABSTRACT

In this paper we propose a probabilistic framework for pro-
ficiency self-assessment of autonomous systems. We define
proficiency as a mathematical concept, i.e., as a metric that
depends on a variety of factors. This concept allows for as-
sessment of the degree of completion of a given task by a sys-
tem. We provide the rationale behind the proposed concept
and its forms for various settings. Further, we present moti-
vating examples with details of evaluation of the proficiency.
We anticipate that our definition of proficiency is a step for-
ward toward achieving “self-awareness” of autonomous sys-
tems.

Index Terms— Self-assessment, autonomous systems,
sequential inference, proficiency.

1. INTRODUCTION

In statistical inference, the problem of determining in real-
time whether a method run by a system performs well has
often been addressed in the literature. Most of the time, the
emphasis has been on the ability of the system to estimate
unknown parameters or to select a model for the observed
measurements. In principle, however, none of the adopted
metrics for measuring the performance of the system (e.g.,
mean square errors of parameter estimates, statistics of model
residuals, or probabilities of correct model selections) are ap-
propriate. The main reason for this is that in real world set-
tings, we neither know the parameters nor the model. A better
approach is to use the ability of the method to predict new ob-
servations, which is the strategy we adopt in this paper.

In the context of sequential methods for model valida-
tion, there are some notable approaches that are only theoret-
ically justified under the assumption of linear and Gaussian
systems. These approaches are typically based on concepts
of residual analysis of processed time series, where, if the
model is correct the residual sequences are white noise pro-
cesses. These procedures are prompt to fail in more general
nonlinear/non-Gaussian systems, where the assumed white-
ness does not hold. Attempts to go beyond simple cases can
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be found in [1], where the focus was on model validation. In
practice, the used models that describe observations are often
only approximately accurate, and then the question is how ro-
bust they are to deviations from the made assumptions under
which they hold. We have investigated this issue in a prelimi-
nary work in [2]. In this context, other developments in clas-
sical Bayesian non-sequential inference include [3]. Relevant
to our concept of proficiency is [4], where convergence re-
sults of predictive distributions obtained by sequential Monte
Carlo methods are discussed. The main idea is to use the pre-
dictive distribution to validate the ability of a filter to predict
new observations and build statistically meaningful tests to
assess whether the prediction is valid or not.

In the literature, there has been interest in proficiency self-
assessment (PSA) and some progress has been made in ma-
chine learning, information theory, and artificial intelligence.
Bayesian optimization is at the core of many approaches [5].
A relevant information-theoretic work discussing model com-
plexity is [6], where predictive abilities of studied systems are
exploited. Similarly, [7, 8, 9] elaborate on prediction and self-
healing systems for evolutionary robotics and artificial intelli-
gence. For instance, in [10] the problem of autonomous robot
navigation is addressed from a machine learning perspective
using neural networks.

Another relevant set of research efforts on self-assessment
is found in the literature on human metacognition [11] and the
use of self-assessment in artificial intelligence [12, 13, 14, 15,
16]. Self-diagnosis in the context of wireless communication
networks can be found in [17, 18].

The main contribution of this paper is the proposal of a
new metric for self-assessment of proficiency in autonomous
systems. The foundations and the rationale of the proposed
PSA are provided in Section 2. In Section 3 we address ap-
proaches to computing the PSA. Sections 4 through 6 provide
examples of use in particular setups that are relevant to many
applications. Finally, Section 7 concludes the paper with final
remarks.

2. FOUNDATIONS OF PROFICIENCY
SELF-ASSESSMENT

In engineering and science, we describe observed data by
models. Let us denote generically a considered model byM.
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One way of assessing models is by their predictive power. For
simplicity, assume that the modelM is used to predict scalar
observations, i.e.,

ŷt = gM(y1:t−1), (1)

where t is a discrete time index, and the notation gM(y1:t−1)
means that the modelM uses previous data y1:t−1 and some
mathematical function gM(·) to predict yt, where the pre-
dicted value is ŷt. Typically, in that case, one would use met-
rics, e.g., like E(ŷt − yt)

2 to compare models and evaluate
how well they perform. It will be beneficial if we can obtain
bounds on how well models can perform.

In estimation theory, the most common benchmark for
assessing estimators is the Cramér-Rao bound (CRB). This
bound provides the smallest achievable variance of an un-
biased estimators. In Bayesian theory, the equivalent to the
CRB is the Bayesian CRB [19]. This bound is the lowest
possible minimum mean square error (MMSE) that can be
obtained in estimating a random parameter. Again, for sim-
plicity, consider a scalar random parameter θ. The following
theorem states the Bayesian CRB [19]:

Theorem: Let θ be a random variable, y an observation
vector, and py,θ(y, θ) their joint distribution. Under some
mild conditions, the mean square error of any estimate θ̂(y)
based on the measurements y satisfies the inequality:

E(θ̂(y)− θ)2) ≥

(
E

[(
∂ ln py,θ(y, θ)

∂θ

)2
])−1

=

(
−E

[
∂2 ln py,θ(y, θ)

∂θ2

])−1
. (2)

In practice, in most of the cases the use of the bound is
to estimate how well an estimator performs. One first obtains
estimates of the parameters, then computes their MSEs, and
finally compares the MSEs to the Bayesian CRB. This pro-
cess, however, is not realistic simply because the ground truth
(the true values of the parameters) is unknown. The parame-
ter values are only known in simulation settings; if they were
known, their estimation would not be needed. In our work, we
want to use the Bayesian CRB to define mathematically the
concept of proficiency of a model without the need to know
the true values of the model parameters and without access to
any observations.

We define the proficiency of a modelM at time t,Pt(M),
by

Pt(M) = E

[(
∂ ln p(yt, y1:t−1|M)

∂yt

)2
]

= −E
[
∂2 ln p(yt, y1:t−1|M)

∂y2t

]
, (3)

where the above expectations are with respect to p(yt, y1:t−1|M),
the joint distribution of the observation that is predicted, yt,

and the previous observations, y1:t−1. We have

Pt(M) ≥ E
[(
yt − gM(y1:t−1)

)2]−1
. (4)

In the above definition, we basically treat the next obser-
vation as a random parameter and then exploit the theorem
for the Bayesian CRB to define the proficiency of a model. It
goes without saying that in Bayesian theory, there is no dif-
ference in the treatment of parameters and observations.

We note that the proficiency of a model satisfiesPt(M) ≥
0, and that Pt(M) is not bounded from above. We refer to
this type of PSA as a priori PSA. A simple example of ana-
lytically obtaining the a priori proficiency Pt(M) is given in
Section 4.

2.1. Conditioning of PSA on observed data

Here we propose a measure of proficiency that is not defined
by averaging of all possible (seen and unseen data) but only
on unseen data. It is given by

Pt(M|y1:t−1) = E

[(
∂ ln p(yt|y1:t−1,M)

∂yt

)2
]

(5)

= −E
[
∂2 ln p(yt|y1:t−1,M)

∂y2t

]
, (6)

where the expectation is over the predictive distribution ac-
cording to the modelM. We can rewrite (6) by

Pt(M|y1:t−1) ≥[∫
(yt − gM(y1:t−1))2p(yt|y1:t−1,M)dyt

]−1
, (7)

where gM(y1:t−1) is a predicted value of the next observa-
tion yt obtained by the modelM, and p(yt|y1:t−1,M) is the
predictive distribution of yt. We call this type of PSA in situ
PSA. The computation of in situ proficiency based on an au-
toregressive model of order one is given in Section 5.

2.2. Extensions to settings with state-space models

The proposed definition of proficiency can readily be ex-
tended to dynamic processes represented by state-space mod-
els. We recall that state-space models are comprised of two
processes, one hidden (also referred to as a state process)
and another that is observed. The objective is to estimate the
state from the observed process. In mathematical terms, we
express the model by

xt = g(xt−1, ut), (8)
yt = h(xt, vt), (9)

where xt is the state at time t, yt is the observation, and ut
and vt are random perturbations. The conditional proficiency
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of a system is defined as in (6). The computation of the pro-
ficiency is discussed further below. The work in this area is
somewhat related to the Bayesian CRB presented in [20]. In
Section 6, we show how we can compute the proficiency of a
Kalman filter.

3. COMPUTATIONAL APPROACHES TO PSA

In most cases, the analytical evaluation of the system’s pro-
ficiency would not be possible. Instead, one has to resort to
computational methods. Consider the conditional proficiency
given by (6). Recall that the expectation is with respect to
the predictive distribution p(yt|y1:t−1,M). The expectation
in (6) can then readily be computed by drawing samples ac-
cording to

y
(m)
t ∼ p(yt|y1:t−1,M), (10)

where y(m)
t is the mth drawn sample of yt. The generation

of these samples can be either done directly (if possible), by
applying a Markov chain Monte Carlo scheme [21], or by an
importance sampling method [22]. When we deal with non-
linear state-space models, a natural candidate for computing
the desired expectations is by way of particle filtering [23]. In
fact, particle filtering has already been used in related applica-
tions where the objective has been to assess if an underlying
model of the data should be rejected or not [24], if the data
contains outliers [25], or if the data experience a change of
model and one needs to change the number of particles to
track the hidden states [4].

4. PROFICIENCY AS A FUNCTION OF A PRIORI
KNOWLEDGE

Let us assume that observed data are generated by a model of
the form

M : yt = a+ wt, (11)

where t = {1, 2, . . . }, a ∼ N (a0, σ
2
a) and wt ∼ N (0, σ2

w).
Thus, the model represents a constant signal embedded in
noise. The value of the signal is a and the noise wt is zero-
mean Gaussian. The prior knowledge about the constant sig-
nal is modeled by a Gaussian distribution N (a0, σ

2
a).

Suppose next that y1 is observed and one wants, givenM,
to predict y2. What is the best possible performance of any
predictor given the available information (y1, a ∼ N (a0, σ

2
a),

and wt ∼ N (0, σ2
w))?

We use (2), which now becomes

P2(M) =

(
−E

[
∂2 ln p(y2, y1|M)

∂y22

])
. (12)

We need the expression for p(y2, y1|M), and we obtain it by

p(y2, y1|M) =

∫ ∞
−∞

p(y2, y1|a,M)p(a|M)da. (13)

where p(y2, y1|a,M) = N (µ, σ2
wI), where µ = [a0 a0]>,

and I is the 2 × 2 identity matrix. It can be shown that upon
integrating out a, we have

p(y2, y1|M) = N (µ,Σ), (14)

where

Σ =

[
σ2
w + σ2

a σ2
a

σa σ2
w + σ2

a

]
. (15)

Next, we can readily find that

∂2 ln p(y2, y1|M)

∂y22
=

σ2
w + σ2

a

σ4
w + 2σ2

wσ
2
a

. (16)

This expression is not a function of the observations, and
therefore

P2(M) =
σ2
w + σ2

a

σ4
w + 2σ2

wσ
2
a

. (17)

We note that when we have perfect knowledge of a (σ2
a =

0), according to the model we do not learn anything from y1
and P2(M) = 1/σ2

w. When we have no knowledge of a and
express this by σ2

a >> σ2
w, we have that P2(M) ≈ 1/(2σ2

w).
In fact, we can write

lim
σ2
a→∞

P2(M) =
1

2σ2
w

, (18)

and not surprisingly, P2(M) reduces with the increase of σ2
w.

Next suppose that we have three observations y1, y2, and
y3. With the same line of reasoning, we obtain

P3(M) =
σ2
w + 2σ2

a

σ4
w + 3σ2

wσ
2
a

. (19)

For as long as σ2
w > 0, σ2

a > 0, the inequality P2(M) <
P3(M) holds, that is, the proficiency of the system with three
samples is always better than the proficiency based on two
samples.

Now, we assume that we have n observations. Then

Pn(M) =
σ2
w + (n− 1)σ2

a

σ4
w + nσ2

wσ
2
a

. (20)

It is immediately clear that when the number of samples n
tends to infinity, we have limn→∞ Pn(M) = 1/σ2

w. This
results shows that the maximum possible proficiency is given
by the inverse of the variance of the noise in the system. In
Fig. 1, we see how the proficiency depends on our knowl-
edge of a (measured by σ2

a) for three different numbers of
observed data and σ2

w = 1. We observe that when the num-
ber of samples is 10, the proficiency is not affected much by
σ2
a. The reason is simple: it is expected that the system will

learn the unknown a from the 9 previous samples and use it
successfully to predict y10. In Fig. 2, we see the dependence
of the proficiency on the number of samples for σ2

w = 1 and
σ2
a = 10. We observe that the proficiency grows quickly for

about the first 10 samples, and then it slows down. For large
values of n it gets close to the theoretical limit of the model.
1/σ2

w.

5074



0 1 2 3 4 5 6 7 8 9 10

a
2

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

p
ro

fi
c
ie

n
c
y

two samples

three samples

ten samples

Fig. 1. Proficiency of the model in (11) as a function of σ2
a.
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Fig. 2. Proficiency of the model in (11) as a function of the
number of samples.

5. PROFICIENCY FOR AUTOREGRESSIVE
MODELS

Let the generating model of the data be

yt = ayt−1 + wt, (21)

where wt ∼ N (0, σ2
w). We want to find the in-situ PSA, of

the model given y1:t−1. It is not difficult to show that

Pt(M|y1:t−1) =
σ2
w + h>t−2ht−2σ

2
a

σ4
w + h>t−1ht−1σ

2
wσ

2
a

, (22)

where ht−1 = [yt−1 yt−2 · · · y1]>. This proficiency is
clearly a function of the history of observed data y1:t−1. One
can also readily see that as t→∞, we have

lim
t→∞

Pt(M|y1:t−1) =
1

σ2
w

. (23)

We note that now Pt(M|y1:t−1) is not necessarily greater
than Pt−1(M|y1:t−2). The reason is that the proficiency
depends on past data. However, the proficiency in general
increases with time and asymptotically reaches the bound
1/σ2

w. We observe that this bound is reached when one has
perfect knowledge of a.

6. PROFICIENCY IN LINEAR/GAUSSIAN STATE
SPACES

Consider the linear state-space model with scalar processes
xt and yt,

xt = axt−1 + ut (24)
yt = bxt + vt, (25)

where a and b are known scalars and ut and vt are Gaussian
noises with known variances σ2

u and σ2
v . Then it is not difficult

to show that the proficiency of the system based on the model
given by (24) and (25) is given by

Pt(M|y1:t−1) =
1

b2σ2
t|t−1 + σ2

v

, (26)

where σ2
t|t−1 is the variance of the predicted state x̂t|t−1 and

obtained from

σ2
t|t−1 = a2σ2

t−1|t−1 + σ2
u, (27)

with σ2
t−1|t−1 being the variance of the filtered state, which is

also recursively obtained.

7. CONCLUSIONS

This paper introduced a metric for assessing the degree of pro-
ficiency of a system in completing a task in an autonomous
manner. The most important factor affecting the capabilities
and limitations of a system are the uncertainties within which
the system operates. This is the reason why the introduced
probabilistic formulation of proficiency self-assessment pro-
vides a natural framework. Our metric is based on Bayesian
theory, and it quantifies the smallest uncertainty in predicting
future observations of a system that operates under a given
model. The definition of proficiency allows for several rele-
vant extensions. This work also provides a general methodol-
ogy for self-assessing the proficiency. We showed on several
examples how the proficiency based on given models varies
with the number of observations and the parameters of the
model, thereby providing insights about the proposed metric.
One methodology for computing the assessment is sequen-
tial in nature in that the systems reassess their abilities as they
acquire new observations. The approach can be further gener-
alized to include information about the environment in which
the systems operate.
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J. Miguez, and P. M. Djurić, “Adaptive importance sam-
pling: The past, the present, and the future,” IEEE Sig.
Proc. Mag., vol. 34, no. 4, pp. 60–79, 2017.
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