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ABSTRACT
In this paper, we propose a new approach for analyzing extreme val-
ues such as large losses in financial markets. Our goal is to com-
pute the predictive distribution of extreme events that are clustered
in time. We apply a stochastic parametrization of the generalized
extreme value distribution to model the asymptotic behavior of the
block-maximum and derive a Rao-Blackwellized particle filter. This
reduces the parameter space, and we derive a concise, recursive so-
lution. Using the filter, the predictive distribution, conditioned on
the past data, is computed at each sample-time. We introduce a new
risk-measure, pVaR

↵

, that is a more robust estimate of the true nature
of value-at-risk, and illustrate our results using both simulated data
and actual stock market returns from 1928-2017.

Index Terms— extreme value theory, particle filter, risk-
management, VaR

1. INTRODUCTION

The modeling and statistical analysis of extreme events is a critical
mission in many signal processing applications such as communica-
tion systems [1], image analysis [2], and noise cancellation [3]. His-
torically, extreme value analysis was developed around hydrological
studies [4] but, today, it is of keen interest in the field of finance
where large financial losses can lead to ruin [5]. Specifically, esti-
mating the tail of the predictive distribution for the maximum loss
over a period of time is of paramount importance.

In this paper, we introduce a new approach for modeling dy-
namic extreme events that exhibit long-term dependency. Utilizing
the Fisher-Tippet-Gnedenko Theorem [5], we obtain a parametric
form for the asymptotic general extreme value (GEV) distribution of
the maximum of a block of data – the block-maximum. To allow
for dependencies, such as volatility clustering, we assume the pa-
rameters of the distribution are a hidden stochastic process which re-
sults in a non-linear, non-Gaussian state-space model with unknown
static parameters. To estimate the parameters of the GEV, we uti-
lize a particle filter (PF) [6]. In particular, given the additional static
parameters, we derive a Rao-Blackwellized particle filter (RBPF)
[7] to marginalize these unknown, static parameters. In doing so,
we derive a recursive solution for the predictive density of the GEV
parameters and block-maxima. The latter is particularly important
when using risk-metrics, which are typically non-linear functions of
the cumulative predictive distribution.

The work presented here is an extension of some recent stud-
ies. In [8, 9], the innovations are modeled as an ARMA process.

⇤D.E.J. thanks FSC and Dr. Carlos Marques for their support.
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In [10], a deterministic trend is applied to a subset of the GEV pa-
rameters, while in [11, 12, 13], a GEV parameter subset is dynamic
with known state equation. Most recently, [14] developed a dynamic
model for the shape parameter and a Gaussian-mixture approxima-
tion to linearize the estimation problem. While the present study is
related to this body of work, we have extended it in a number of
ways. First, under a reasonable assumption, we reduce the number
of GEV parameters and model the remaining set as a vector Markov
process, with unknown system and covariance matrix. Second, we
recursively compute the marginalized state density, eliminating the
need to estimate unwanted nuisance parameters and, in the process,
we derive recursive expressions for the necessary sufficient statistics.
This allows for a fast, real-time implementation without the need to
batch-process observations. Lastly, we derive the predictive distri-
bution, for the block-maxima, that we can use to estimate p-values
for risk-metrics.

The paper is organized as follows. In the next section, we for-
mulate the problem for the time-varying block-maxima. In Section
3, we propose a solution to the problem, deriving the log-likelihood
function of the block-maxima, given the density parameters, and the
recursive solution for marginalizing the nuisance parameters - Rao-
Blackwellization. We illustrate the efficacy of our method in Section
4 using simulated data and S&P 500 stock market returns from 1928
through the end of 2017. In addition, we introduce a new risk-metric,
pVaR

↵

, and highlight its usefulness. Lastly, we conclude the paper
with ideas for further research.

2. PROBLEM STATEMENT

Let yk 2 R, k = 1, · · · , N be the kth block-maximum, with block
size Bk, for an underlying strictly stationary process, st. That is

yk = max

N
k�1<tN

k

st, (1)

where (Nk�1, Nk] are the time indices for the kth block (k � 1)
and N0 = 0. In our case, st 2 R and st = �rt, where rt is the
daily return for the S&P 500 index observed for t 2 N. The return
is defined as the percentage change in the price, pt, of an asset or
rt = (pt � pt�1)/pt�1. Thus, a large value of st is a large daily
loss in percentage terms. In our study, block sizes are the number
of trading days in a year (⇡ 252) and we model the largest daily
loss (negative return) for the S&P 500 over the course of a year (see
Figure 1.)

The Fisher-Tippet-Gnedenko (FTG) theorem states that the
only non-degenerate limiting distribution for the normalized block-
maximum of i.i.d. random variables (RVs) are in the generalized
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Fig. 1. Annual block maximum of S&P 500 return loss.

extreme value (GEV) family [15] with parameter ⇠. One form of the
GEV cumulative distribution function (cdf) is

H⇠(y) = exp(�(1 + ⇠y)�1/⇠
); ⇠ > 0, y � �1/⇠, (2)

where ⇠ is the shape parameter of the distribution.
With ⇠ being strictly positive, as in (2), the distribution is the

standard Fréchet distribution which is the limiting class for underly-
ing heavy-tailed distributions that exhibit regular variation [16] and
are typically employed in finance. A more general form of the dis-
tribution has three parameters, a location parameter µ 2 R, a scale
parameter � > 0, and the shape parameter ⇠ > 0. Thus, we asymp-
totically model each of the block-maxima y ⇠ H⇠(

y�µ
�

), where
y 2 [µ��/⇠,1). While the FTG theorem was originally stated for
i.i.d. rvs, it holds for most strictly stationary processes [5] with the
so-called extremal index absorbed by the parameter �.

We propose to model the three parameters of the GEV distribu-
tion, ⇠,�, µ, as a stochastic process. In order to insure positivity, we
define a state vector xk = [log(⇠k) log(�k) µk]

>
) and the state

equation
xk = ⌘ +⇥xk�1 +C1/2uk, (3)

where xk 2 R3, k 2 N0, uk ⇠ N (0, I3), ⌘ 2 R3, and ⇥,C 2
R3⇥3. The unknowns are xk,⌘,⇥, and C.

The objective is to determine the predictive distribution of yk+1,
i.e., p(yk+1|y1:k), where y1:k ⌘ {y1, y2, · · · , yk} represents the
set of past block-maximum observations. We formally obtain the
predictive distribution from

p(yk+1|y1:k) =
Z

p(yk+1|xk+1)p(xk+1|y1:k)dxk+1, (4)

where the likelihood function is p(yk|xk) =

d
dy

k

H⇠
k

(

y
k

�µ
k

�
k

) and
p(xk+1|y1:k) is the predictive distribution of xk+1 based on past
observations.

3. PROPOSED METHOD

A reasonable, and simplifying, assumption is that the block-
maximum, yk, has support [0,1) which allows the state vector
to be reduced as µk = �k/⇠k. The implication, which is true in our

case, is the S&P 500 has a non-negative loss at least one day each
year. We can then specify the observation as a scaled and translated
GEV RV

yk = ex2
k

�x1
k

+ ex2
kwk, (5)

where ex1
k

= ⇠k, ex2
k

= �k, and wk is distributed according to
(2). Combined, equations (3) and (5) form our non-linear state-space
model reminiscent of stochastic-volatility models that are also used
in finance [17].

With particle filtering [18], an approximation for the predictive
density of the state, p(xk+1|y1:k), is

p(xk+1|y1:k) ⇡
M
X

m=1

w
(m)
k p(xk+1|x(m)

0:k ), (6)

where x
(m)
0:k is the mth particle (vector) stream and w

(m)
k is the as-

sociated weight. Assuming equal weights, the particles are samples
from p(x0:k|y1:k) that recursively evolves according to

p(x0:k|y1:k) / {p(yk|xk)p(xk|x0:k�1)} p(x0:k�1|y1:k�1). (7)

At this point, the stumbling block is the set of unknown, static
parameters in the state equation (3). Our approach is to marginalize
p(xk+1|⌘,⇥,C,x0:k) and implement a Rao-Blackwellized particle
filter. For an efficient solution, we need a recursive expression for

Z

⌘,⇥,C

p(xk+1|⌘,⇥,C,x0:k)dP (⌘,⇥,C|x0:k). (8)

The resulting predictive density, p(xk+1|x0:k), which is used to
extrapolate particles, can be solved analytically for the case of the
general linear model, with a non-informative prior, and results in a
multivariate Student-t distribution [19]. Importantly, we show that
the necessary sufficient statistics, the mean vector and scale matrix,
can be recursively solved so that a computationally efficient imple-
mentation is derived.

Our problem can be stated as a general linear model

Xk = �Hk +Uk, (9)

where Xk = [xk,xk�1, · · · ,x1] 2 Rp⇥k, � 2 Rp⇥q is an un-
known matrix, Hk = [hk,hk�1, · · · ,h1] 2 Rq⇥k has columns
given by h>

k = [1 xT
k�1], and Uk 2 Rp⇥k is a random Normal

matrix whose columns are i.i.d. N (0,C) with C unknown. In our
case, the columns of Xk are formed by the particles from 1 to k,
� = [ ⌘ ⇥ ], and the columns of Hk include the past parti-
cles from 0 to k � 1. Therefore, (9) is the state transition equation
that describes the evolution of the particle vector stream, where each
particle stream operates under its own version of this multivariate
regression model.

The multivariate Student-t distribution of a p-dimensional ran-
dom vector is denoted as tp(v,µ,⌃) / [1 + (x � µ)T⌃�1

(x �
µ)/v]�(v+p)/2 with v degrees of freedom, mean µ, and scaling ma-
trix ⌃. In our case, p = 2 and q = p + 1. When we use the
non-informative prior, p(⌘,⇥,C�1

) / |C|(p+1)/2, we can write
the marginal predictive density for xk+1 as a multivariate Student-t
distribution with vk = n� 2p degrees of freedom, i.e.,

p(xk+1|Xk,Hk,hk+1) ⇠ tp(vk, ˆxk+1, ˆ⌃k+1). (10)

The mean of this distribution is derived as,

ˆxk+1 = Sk
XH(Sk

HH)

�1hk+1 =

ˆ�khk+1, (11)

5063



and scale matrix as

ˆ⌃k+1 =

1 + h>
k+1(S

k
HH)

�1hk+1

vk
(Sk

XX � ˆ�kS
k
XH

>
), (12)

with the matrices defined as

Sk
XX = XkX

>
k , Sk

XH = XkH
>
k , Sk

HH = HkH
>
k . (13)

Letting Pk = (Sk
HH)

�1, we derive recursive expressions for the
mean and the scale matrix as follows:

Kk = h>
k Pk�1[1 + h>

k Pk�1hk]
�1, (14)

Pk = Pk�1[I� hkKk], (15)
ˆ�k =

ˆ�k�1 + (xk � ˆxk)Kk, (16)

ˆ⌃k+1 =

vk � 1

vk

(

1 + h>
k+1Pkhk+1

1 + h>
k Pk�1hk

)

⇥
n

ˆ⌃k + (xk � ˆxk)(xk � ˆxk)
>/(vk � 1)

o

, (17)

ˆxk+1 =

ˆ�khk+1. (18)

In our case, xk(= x
(m)
k ) is the mth particle vector that is avail-

able after updating the particle filter with the measurement at time k
and h>

k+1 = [1 x>
k ], which is needed to update both the mean and

scale matrix, is also available. With this result, we can readily im-
plement the RB particle filter (RBPF) [20]. For each particle stream,
we retain the sufficient statistics, as defined above, recursively es-
timate the mean, ˆxk+1, and scale matrix, ˆ⌃k+1, and then sample
x
(m)
k+1 ⇠ tp(vk, ˆxk+1, ˆ⌃k+1) to generate new particles over time,

between observations. The particles are then updated (re-sampled)
according to the likelihood function. The log-likelihood function is
given by (here we drop the time subscript for simplicity)

ln(p(y|x)) = �x2 � (yex1�x2
)

�e�x1

� (1 + e�x1
) ln(yex1�x2

), (19)

and to initialize the filter, we use random samples generated from
(9) and the batch equations (11) - (13) to initialize the requisite filter
parameters.

Equipped with the RBPF approximation for the state predictive
density, p(xk+1|y1:k), as in (6), we may compute the predictive den-
sity of yk+1 conditioned purely on past observations y1:k via (4).
That said, we require the cdf of this predictive density

F (yk+1|y1:k) =
Z y

k+1

�1
p(⇣|y1:k)d⇣, (20)

which we can readily obtain as

F (yk+1|y1:k) = E
x

k+1|y1:k [Hx

k+1(yk+1)]. (21)

The cumulative predictive distribution is the expected GEV distribu-
tion conditioned on the state predictive density p(xk+1|y1:k).

4. RESULTS

To begin, we simulated the stochastic GEV parameters from an un-
coupled, mean-reverting, AR(1) process as follows

log ⇠k = (1� .95)⇥ log(.45) + .95 log ⇠k�1 + .1u1,k, (22)
log �k = (1� .9)⇥ log(.012) + .9 log �k�1 + .1u2,k, (23)
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Fig. 2. True and estimated GEV parameters for one run.
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Fig. 3. RMS estimation error for GEV parameters over 100 runs.

where u1,k and u2,k are independent N (0, 1). We produced 250
samples for each simulation run and we used M = 5000 particles.
At each point in time we computed estimates for the GEV param-
eters as ˆxk =

PM
m=1 w

(m)
k x

(m)
k . A representative simulation run

is shown in Figure 2 and, for this example, the filter tracks the true
parameters quite well.

We performed 100 simulation runs and we computed an RMS
error at each sample time across the 100 runs. The RMS errors are
shown in Figure 3. After an initial period of roughly 30 samples, the
filter performance stabilizes and appears reasonable. The average
RMS error for ⇠, after the initial convergence period, was about .06
which is 13% of the underlying process mean of .45. Similarly, for �,
the RMS error was .3% compared to its mean value of 1.2%. In all,
the simulation gives us confidence in the approach and performance
of the RBPF.

We also ran the filter on the S&P 500 block-maxima data, shown
in Figure 1, which are the N = 90 maximum annual daily losses
(negative return) for the years 1928-2017. We computed the predic-
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Fig. 4. GEV parameter estimates for S&P 500 data

tive estimates for our GEV parameters, ˆxk+1 using solely the ob-
servations up to time k. In Figure 4, we show the estimates for the
GEV parameters along with computed one standard deviation bands.
The shape parameter estimate, ˆ⇠, appears stable over time ranging
from .45 to .5. We should note that a RV whose block-maxima is
in the Fréchet limit has finite Kth moment for ⇠ < 1/K. Thus,
ex-post, there is a decent chance that the underlying process driving
daily stock market returns has infinite variance. The scale parameter
estimate, ˆ�, appears more dynamic ranging from 1% to 1.5% with
visible trends and oscillations.

To test the efficacy of our approach, we compared the actual
S&P 500 block-maximum loss to quantiles predicted by the model,
using (21), which is shown in Figure 5. The actual losses exceeded
the predictive median 54% of the time and the 90’th percentile 8%
of the time. In addition, we applied a chi-square test as described
in [21]. At each time k, we partition the support of yk+1 into J
equiprobable intervals, Sj , j = 1, 2, · · · , J using the predictive cdf
F (yk+1|y1:k). We then compare the (k + 1)st observation, yk+1,
to each interval to find the index j such that yk+1 2 Sj . In other
words, we quantize the observations into model-based, equiprobable
intervals to create a frequency distribution computed as

bpk+1(j) =
1

k + 1

(k⇥bpk(j)+Iy
k+12S

j

), j = 1, 2, · · · , J, (24)

where Ix is the indicator function and bp0(·) = 0. If the model is
true, bpN will be a sample estimate of a uniform distribution and the
statistic DN = J(N � 1)

PJ
j=1(bpN (j) � 1/J)2 is approximately

chi-square with J � 1 degrees of freedom. For our test, we chose
J = 20 intervals and, with N = 89, the p-value from the chi-square
test was .96 giving confidence in the model’s predictive power.

In finance, risk-metrics are derived from the tail of the predic-
tive cdf. A widely used risk-metric is value-at risk (VaR↵) which is
the ↵-quantile of the loss distribution, H�1

x

(↵). Traditionally, the
maximum likelihood (ML) estimates for the GEV parameters are
used and H�1

x̂

ML

(↵) is computed. However, a critical issue is that
risk-metrics are unknown quantities and using ML estimates for the
parameters, or even the predictive cdf F (yk+1|y1:k), can be insuf-
ficient to gauge risk. This is particularly true since the density of
VaR↵ is asymmetric with positive skew.

To improve risk-assessment, we introduce a new risk-metric,
pVaR

↵

, which is the threshold such that Prob( VaR↵ > pVaR
↵

) <
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estimates

1 � p. In Figure 6, we show different VaR99% statistics over time
using the RBPF. Shown is the Expected VaR, E(VaR99%), which at
time k is E

x|y1:k�1
[H�1

x

(99%)], as well as the 50%VaR99%
and the

90%VaR99%
. As of the end of 2017, the 90%VaR99%

⇡ 28% imply-
ing model-based confidence, at the 90% level, that the largest daily
loss in 2018 will not exceed that level. This is in contrast to the
50%VaR99%

= 20.4% and E(VaR99%) = 21.3%. The latter indicates
a skew to the VaR99% distribution, which becomes even more severe
at higher quantiles.

5. CONCLUSIONS

In this paper we proposed a new approach for analyzing extreme
events in financial markets along with a new risk-metric, pVaR

↵

,
that more adequately describes risk. We derived the analytical so-
lutions and a recursive implementation via RB particle filtering. We
tested our model using both simulated and actual returns data and
statistical tests indicate the performance of the model is quite good.
In future research, we will study the effect of different block sizes,
daily threshold exceedances, as well as the Cramér-Rao bound.
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