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ABSTRACT

Many real world applications that suffer from missing data and out-
liers can be modeled in a matrix completion framework. In this
paper, we consider low-rank matrices whose subspace evolves ac-
cording to a state-space model and propose an online variational
Bayesian formulation to learn the low rank components as well as the
state-space model. Unlike the other matrix/tensor completion tech-
niques, in our framework, the key algorithm parameters like rank and
various noise power need not be fine-tuned and are learned automat-
ically. We also propose a forward-backward algorithm that allows
update to be carried out at low complexity manner. Simulations per-
formed on the real world traffic data illustrates promising imputation
as well as temporal prediction performance even in an online setup.

Index Terms— Matrix completion, Variational Bayesian, Traf-
fic Estimation

1. INTRODUCTION

Real-world data collected from sensors are often incomplete as well
as noisy with the possibility of outliers. The collected data is of-
ten in the form of matrix with missing entries that need to be in-
ferred. Many approaches to impute the missing entries model the
data as belonging to an underlying low-dimensional subspace that
can subsequently be recovered via matrix completion [1–4], robust
principal component analysis (PCA) [5, 6], or their tensor counter-
parts [7]. Such techniques approach the problem from a static per-
spective. Specifically, matrix or tensor completion is applied to data
collected as a whole to impute the missing entries. In contrast, many
real-world problems – for instance the traffic estimation and pre-
diction problem discussed in this paper – are inherently dynamic,
consisting of sequentially arriving data that must be dealt in an on-
line manner taking care of an underlying low-rank subspace that also
evolves over time.

This work considers the first low-rank robust subspace filtering
approach for online data imputation and prediction. We propose
a generative data model to do so and subsequently use variational
Bayesian formalism to learn the parameters of the model. Differ-
ent from the existing matrix and tensor completion formulations, we
consider low-rank matrices whose underlying subspace evolves ac-
cording to a state-space model. As columns of the matrix arrive se-
quentially over time, the low-rank components, as well as the state-
space model, are learned in an online fashion using the variational
Bayes formalism. In particular, component distributions are chosen
to allow automatic relevance determination (ARD) [3] and unlike the
matrix or tensor completion works, the algorithm parameters such as
rank, noise powers, and state noise powers need not be specified or
tuned. We also propose a low-complexity forward-backward algo-
rithm that allows the updates to be carried out efficiently. A robust
version of the VBSF algorithm is also developed for outlier removal
and data cleansing but omitted due to the lack of space.

The online matrix completion framework discussed in this pa-
per has many applications like traffic monitoring and prediction in
the field of urban transportation, air quality monitoring and predic-
tion as well as other traditional applications in machine learning.
Traffic prediction has emerged as an important problem, thanks to
the proliferation of various on-demand mobility solutions across the
world with a variety of modes of transport like buses, cabs and even
electric scooters. Moreover, the traffic data generally enjoys spatio-
temporal correlation [8] that makes it amenable for an online matrix
completion approach. We test the proposed algorithm on the real
world traffic data collected over 200 square km. area within the city
of New Delhi, India. The resulting matrix with more than 500 mea-
surements per time instant is used for comparing the performance of
the proposed algorithm with various state-of-the-art algorithms such
as GROUSE [2] and LRTC [7]. The results show that modeling the
evolution of the underlying subspace leads to accurate predictions
and the low-complexity updates make the algorithm ideal for real-
time applications.

1.1. Related Work

Variational Bayesian based approaches for matrix completion are
well known [3, 4, 9–13]. One of the first works considered the mea-
sured matrix to be expressible as a product of low-rank matrices,
associated with appropriate ARD priors [3] while faster algorithms
for similar settings were proposed in [9,10,13]. More recently, other
approaches towards modeling the measured matrices have also been
proposed [11]. The Variational Bayesian approaches mentioned do
not use a state space model for the low dimension subspace [3,4,13].
In contrast to these, the state-space modeling in our work is inspired
by [12], where the low-complexity updates were first proposed in
the context of linear dynamical models. The VBSF algorithm in the
current work extends and generalizes that in [12] to incorporate low-
rank structure.

Notation: The (i, j)-th element of a matrix A is denoted by aij ,
the i-th column by ai or [A]·i, and the i-th row by aTi· or [A]Ti· . The
all-one vector of size n × 1 is represented by 1n, while In denotes
identity matrix of size n × n. The multivariate Gaussian probabil-
ity density function (pdf) with mean vector µ and covariance matrix
Σ evaluated at x ∈ Rn is denoted by N (x | µ,Σ). Likewise,
Ga(x, a, b) denotes the Gamma pdf with parameters ax and bx eval-
uated at x ∈ R+. The expectation operator is symbolized by E while
the pdf function is generically denoted by p(·). Given data D, we
denote x̂ := E[x | D].

2. VARIATIONAL BAYESIAN SUBSPACE FILTERING

We consider a scenario where the data with the missing entries is
arriving in a sequential manner. For the application of road traffic
estimation and prediction considered in the paper, the traffic data for
m road segments is collected into the matrix Y ∈ Rm×t, where

5057978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



t denotes the number of time instances over which measurements
are made. More generally, Y is an incomplete and growing matrix
whose columns arrive sequentially over time. Specifically, for each
column yτ with 1 ≤ τ ≤ t, only entries from the index set Ωτ ⊂
{1, . . . ,m} are observed. The algorithms developed here will seek
to achieve the following two goals:

• Imputation, which yields {ŷiτ}i/∈Ωτ for 1 ≤ τ ≤ t

• Prediction, which yields {ŷt+τ}Tpτ=1 where Tp is the predic-
tion horizon.

We begin with detailing a generative model for the matrix Y.
The proposed model will not only capture the rank deficient nature of
Y [14] but also the temporal correlation between successive columns
of Y . Recall that the standard low-rank parametrization of the full
matrix Y takes the form Y = AB where A ∈ Rm×r and B ∈
Rr×t. Classical non-negative matrix completion approaches seek to
obtain such a factorization. In such algorithms, the choice of r is
critical to avoiding underfitting or overfitting.

Within the Bayesian setting however, the measurements are
modeled as arising from a noise distribution with unknown pa-
rameter, while various parameters are assigned different prior dis-
tributions. The Bayesian framework allows the use of Automatic
Relevance Determination (ARD), wherein associating appropriate
priors to the problem parameters leads to pruning of the redundant
features [14]. This work uses pdfs from the exponential family that
allow for tractable forms of the posterior pdf but are also flexible
enough to adequately model the data.

Specifically, the entries of Y are generated from the following
probability density function (pdf)

p(yiτ | ai·,bτ , β) = N (yiτ | bTτ ai·, β
−1) i ∈ Ωτ (1)

for all τ ≥ 1, where A ∈ Rm×r , B ∈ Rr×t, and β ∈ R++ are
the (hidden) problem parameters. The temporal evolution of Y is
modeled such that columns of B follow first order autoregressive
model:

p(bτ | J,bτ−1) = N (bτ | Jbτ−1, Ir) 2 ≤ τ ≤ t (2)

for τ ≥ 2, where J ∈ Rr×r is again a problem parameter. It follows
from (2) that the conditional pdf of bτ given J is

p(B | J) = N (b1;µ1,Λ1)

t∏
τ=2

N (bτ | Jbτ−1, Ir) (3)

The ARD priors to ensure that r can be learned in a data driven
fashion are given by

p(A | γ) =

r∏
i=1

N (ai | 0, γ−1
i Im) (4)

p(J | υ) =

r∏
i=1

N (ji | 0, υ−1
i Ir) (5)

where the precisions γ and υ are problem parameters. As Subspace
Bayesian Learning, many of the precisions {γi, υi} will generally
assume large values during the inference, effectively removing the
corresponding columns from A and J respectively. Finally, the three
precision variables are selected to have have non-informative Jef-
frey’s priors

p(β) =
1

β
, p(γi) =

1

γi
, p(υi) =

1

υi
(6)

for 1 ≤ i ≤ r. Let yΩ denote the collection of measure-
ments {yiτ}ti∈Ωτ ,τ=1. Collecting the hidden variables into H :=
{A,B,J, β,γ,υ}, the joint distribution of {yΩ,H} can be written
as

p(yΩ,H) = p(yΩ|A,B, β)p(A|γ)p(B|J)p(J|υ)p(β)p(υ)p(γ)
(7)

2.1. Variational Bayesian Inference

Since exact full Bayesian inference is intractable, we make use of the
mean field approximation, wherein the posterior distribution p(H |
yΩ) factorizes as

p(H | yΩ) ≈ q(H) = qA(A)qB(B)qJ(J)qυ(υ)qβ(β)qγ(γ).
(8)

Under the mean-field approximation, the variational lower bound
can be maximized via coordinate ascent iterations [15]. Indeed,
thanks to the choice of conjugate priors for the parameters, it can
be shown that the individual factors in (8) take the following forms:

qB(B) = N (vec (B) | µB,ΞB) (9a)

qai· = N (ai· | µA
i ,Ξ

A
i ) (9b)

qji· = N (ji· | µJ
i ,Ξ

J
i ) (9c)

qβ(β) = Ga(β; aβ , bβ) (9d)
qγi(γi) = Ga(γi; a

γ
i , b

γ
i ) (9e)

qυi(υi) = Ga(υi; a
υ
i , b

υ
i ) (9f)

where µB ∈ Rrt, ΞB ∈ Rrt×rt, µA
i ∈ Rr , ΞA

i ∈ Rr×r , µJ
i ∈ Rr ,

ΞJ
i ∈ Rr×r , and aβ , bβ , aγi , bγi , aυi , bυi ∈ R++. Consequently, each

iteration of coordinate ascent simply involves updating the variables
{µB,ΞB, {µA

i }, {ΞA
i }, {µJ

i },
{ΞJ

i }, aβ , bβ , {aγi }, {b
γ
i }, {a

υ
i }, {bυi }} in a cyclic manner.

In the present case, not all variables need to be updated explic-
itly and the updates may be written in a compact form. Let us denote
ωτ := |Ωτ | and let ω :=

∑
τ ωτ be the total number of observa-

tions made. Then, the updates for hyperparameters {υ,γ} take the
following form

υ̂i =
m∑m

k=1 ([µJ
k ]2i + [ΞJ

k ]ii)
(10a)

γ̂i =
m∑m

k=1 ([µA
k ]2i + [ΣA

k ]ii)
(10b)

Subsequently, let υ̂ and γ̂ be the vectors that collect {υ̂i} and {γ̂i},
respectively. Since bτ denotes the τ -th column of BT , its posterior
distribution may be written as qbτ (bτ ) = N (bτ | µB

τ ,Ξ
B
τ ), where

µB
τ and ΞB

τ comprise of the corresponding elements of µB and ΞB,
respectively. Also define the posterior covariance matrices

ΣB
τ,ι := µB

τ (µB
ι )T + ΞB

τ,ι (11)

ΣJ
i := µJ

i (µJ
i )T + ΞJ

i (12)

ΣA
i := µA

i (µA
i )T + ΞA

i (13)

Subsequently, the update for β̂ becomes

β̂ =
ω∑t

τ=1

∑
i∈Ωτ

[
y2
iτ − 2yiτ (µA

i )TµB
τ + tr

(
ΣA
i ΣB

τ,τ

)]
(14)
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Next, the updates for the factors J and A take the following
form

µJ
i = [ΞJ

i Σ
B
τ,τ−1]·i (15a)

ΞJ
i =

(
Diag (υ̂) +

t−1∑
τ=1

ΣB
τ,τ−1

)−1

(15b)

µA
i = β̂ΞA

i

∑
τ∈Ω′

i

µB
τ yiτ (15c)

ΞA
i =

γ̂iIr + β̂
∑
τ∈Ω′

i

ΣB
τ,τ

−1

(15d)

where Ω′i := {τ | i ∈ Ωτ}. Observe from the updates that the
rows of J are independent identically distributed under the mean
field approximation. The update for µB can be written as

µB = ΞB


β̂
∑
i∈Ω1

yi1µ
A
i + Λ−1

1 µ1

β̂
∑
i∈Ω2

yi2µ
A
i

...
β̂
∑
i∈Ωt

yitµ
A
i

 (16)

Finally, [ΞB]−1 a block-tridiagonal matrix. Defining Ĵ := E[J |
yΩ] as the matrix whose i-row is given by (µJ

i )T , ΣA
(τ) =∑

i∈Ω′
τ

ΣA
i , and ΣJ :=

∑r
i=1 ΣJ

i , the updates take the form:[
ΞB
]−1

= β̂Diag
(
ΞA

(1), . . . ,Ξ
A
(t)

)
+

+


Λ−1

1 −Ĵ . . . 0

−Ĵ Ir + ΣJ −Ĵ . . .
...

...
...

. . . 0 −Ĵ Ir

 . (17)

It is remarked that although the rt × rt matrix [ΞB]−1 is block-
tridiagonal, the matrix ΞB is dense, and direct inversion would be
prohibitively costly. Moreover, the classical Rauch-Tung-Striebel
(RTS) smoother cannot be directly applied as the evaluation since
evaluating the conditional expectations under q(B) is difficult and
not amenable to the Matrix Inversion Lemma [16]. Interestingly,
observe that the updates in (14) and (15) depend only on diagonal
and super-diagonal blocks of ΞB, namely ΞB

τ,τ and ΞB
τ,τ−1, respec-

tively. The next subsection details a low-complexity algorithm for
carrying out the updates for these blocks as well as for µB.

2.2. Low-complexity updates via LDL-decomposition

Thanks to the block-tridiagonal structure of [ΞB]−1, it is possible
to use the LDL decomposition to carry out the updates in an effi-
cient manner. Decomposing [ΞB]−1 = LDLT , the key idea is that
left multiplication with ΞB is equivalent to left multiplication with
L−TD−1L−1. Towards this end, we utilize the algorithm from [17],
that comprises of two phases: the forward pass that carries out the
multiplication with D−1L−1 and the backward pass that implements
the multiplication with L−T . Let us define for 2 ≤ τ ≤ t,

Ψτ := β̂
∑
i∈Ωτ

ΣA
(i) + Ir + 11τ 6=t

r∑
i=1

ΣJ
i (18)

vτ := β̂
∑
i∈Ωτ

yiτµ
A
i . (19)

The forward pass outputs intermediate variables Ξ̆B
τ,τ , Ξ̆B

τ,τ+1, and
µ̆τ , that are subsequently used in the backward pass. The updates
take the following form:

1. Initialize Ξ̂B
1,1 = Λ1 and µ̂B

1 = µ1 + β̂
∑
i∈Ωτ

yiτΛ1µ
A
i

2. For τ = 1, . . . , t− 1

Ξ̆B
τ,τ+1 = −Ξ̂B

τ,τ Ĵ (20a)

Ξ̆B
τ+1,τ+1 = (Ψτ+1 − (Ξ̆B

τ,τ+1)TΨB
τ,τ+1)−1 (20b)

µ̆B
τ+1 = Ξ̆B

τ+1,τ+1(vτ+1 − (Ξ̆B
τ,τ+1)T µ̆B

τ ) (20c)

3. For τ = t− 1, . . . , 1

ΞB
τ,τ+1 = −Ξ̆B

τ,τ+1Ξ
B
τ+1,τ+1 (20d)

ΞB
τ,τ = Ξ̆B

τ,τ − Ξ̂B
τ,τ+1(ΞB

τ,τ+1)T (20e)

µB
τ = µ̆B

τ − Ξ̆B
τ,τ+1µ

B
τ+1 (20f)

4. Output {ΞB
τ,τ+1,Ξ

B
τ,τ ,µ

B
τ }tτ=2

Note that while ΞB
i,j 6= 0 for |i − j| > 1, these blocks are neither

calculated in the forward and backward passes nor required in any
of the variational updates.

Finally, the predictive distribution p(yiτ | yΩ) for τ /∈ Ωi or
τ ≥ t+1 is still not tractable in the present case. Instead, we simply
use point estimates for estimating the missing entries. Specifically,
for τ /∈ Ωi, the missing entries are imputed as

yıτ = (µB
τ )TµA

i . (21)

Likewise for τ ≥ t+ 1, the prediction becomes

yıτ = (Ĵτ−tµB
t )TµA

i . (22)

Overall, the different parameters are updated cyclically until conver-
gence for each t = 1, 2, . . ..
EM algorithm is used in the model which treats Hh := {A,B,J}
as hidden variables (with posterior pdf qh(Hh) := qB(B)qA(A)
qJ(J)) and uses maximum a posteriori (MAP) estimates for the pre-
cision variablesHp := {υ,γ, β}.

3. RESULTS

We now discuss the performance of the proposed VBSF algorithm
for the twin tasks of real time traffic estimation as well as future
traffic prediction in a road network. To evaluate the VBSF algorithm,
we use the partial road network of the city of New Delhi with an area
of 200 square kms consisting of m = 519 edges. To estimate the
model parameters and for testing purposes, speed data was collected
using the Google Maps API for nearly 3 months across all the 519
edges. Taking advantage of the slow varying nature of the speed
in the network edges, we sample the traffic data at the rate of one
sample every ts = 15 minutes. Note that our algorithm is agnostic
of the sampling rate and would work for higher sampling rates as
well.

In order to evaluate the VBSF algorithm for both real-time traf-
fic estimation as well as the future traffic prediction problems, an
incomplete data set is created by randomly sampling a fraction p of
the measurements. In our evaluations we consider three different
cases with 75%, 50%, and 25% of missing data. To evaluate the
VBSF algorithm for the current (or real-time) traffic estimation task,
for a selected time interval, we select previous h = 30 time intervals
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Algorithm 1: Variational Bayesian Subspace Filtering

1 Initialize γ,β,v,
sub = 1, Ωτ , Ω′i,Ξ

A,µA,ΞB,µB ,ΞJ
diag,µ

JΛ1, µ1,

2 Ŷ = µA(µB)T

3 while Yconv < 10−5 do
4 Yold = Ŷ
5 Γ = diag(γ)
6 if sub == 1 then
7 Update using (20)
8 sub = 2
9 Update using (10a), (11), (15a), (15b) ∀ 1 ≤ i ≤ r

10 else if sub == 2 then
11 Update using (13), (15c), (15d), (10b) ∀ 1 ≤ i ≤ m
12 sub = 1

13 end
14 Ŷ = µA(µB)T

15 Update using (14)
16 Yconv =

‖Y−Yold‖F
‖Yold‖F

17 end
18 return (Ŷ,ΞA,µA,ΞB,µB ,ΞJ

diag,µ
J )

for the same day. Finally, we use the traffic data for the last 3 months
to test the VBSF algorithm, wherein we use the first month data is
used to estimate the priors, while the subsequent months data is used
to evaluate the accuracy of the estimation and prediction tasks.

3.1. Performance Index

To measure the effectiveness of our algorithm and for the com-
parison with other relevant algorithms, we use mean relative error
(MRE) as the performance index. For any time instance τ , the MRE
denoted by MREτ is defined as:

MREτ =
1

z

z∑
k=1

‖ ŷτ,k − yτ,k ‖2
‖ yτ,k ‖2

. (23)

where yτ,k and ŷτ,k are the ground truth and estimated data for kth

day and τ th time instance. Since the value for the known data may
be modified post estimation, we compute the MRE over the whole
column for a given time instance. MRE is calculated for each day
time of the day separately. For calculating the overall accuracy of
prediction for a day, we calculate the MRE over z days. The value
of z is taken as 50 for weekdays and 10 for the weekends.

3.2. Real Time Traffic Estimation

We now discuss simulation results for the current traffic estima-
tion based on the current and past missing data using the VBSF
algorithm. The MRE values for real time traffic estimation using
VBSF is shown in Table 1 . We compare our algorithm with other
methods that potentially solve the current traffic estimation problem
in the missing data scenario. We use low rank tensor completion
(LRTC) [7], Grassmannian Rank-One Update Subspace Estimation
(GROUSE) [2] algorithm and finally the historic mean for compar-
ison purposes. The historic mean is simply the mean of edge speed
values at a given time instance calculated using the data. Table 1
presents the overall results. It is observed that for low missing rate
of traffic data (25%), the LRTC (low rank tensor completion) [7] and

VBSF obtain similar performance. But as the missing data increases,
VBSF outperforms the LRTC method. Also, for all the cases, VBSF
performs better than GROUSE. This difference in performance can
be attributed to the fact that the VBSF framework captures the tem-
poral dependencies as well as the latent factors in the traffic matrix
better than other methods. In terms of running time, VBSF is faster
than LRTC and is comparable to GROUSE as shown in Table 2.

p = 0.25 p = 0.50 p = 0.75
MRE MRE MRE

VBSF 0.1439 0.11277 0.09336
GROUSE 0.372 0.3446 0.3085
LRTC 0.1921 0.1418 0.09578
Mean 0.2083 0.2083 0.2083

Table 1: Performance comparison for real time traffic estimation

p = 0.25 p = 0.50 p = 0.75
time(sec) time(sec) time(sec)

VBSF 0.7001 0.8685 0.9675
GROUSE 0.7935 0.85324 0.923960
LRTC 2.92 4.32 6.23

Table 2: Comparison of running time for different algorithms

3.3. Future Traffic Prediction Problem

We also test the VBSF algorithm for speed prediction during the fu-
ture time intervals assuming randomly sampled data from the current
and previous time intervals. We predict 15 and 30 mins ahead traffic.
The performance of the proposed VBSF algorithm is compared with
that of LRTC in Table 3. The VBSF performs better than the LRTC.

p = 0.50 p = 0.50
15mins 30mins

VBSF 0.15362 0.17434
LRTC 0.15843 0.1812
Mean 0.2082 0.2073

Table 3: Performance comparison for traffic prediction

4. CONCLUSION

The VBSF algorithm presented in the paper models the traffic matrix
as a low rank subspace whose temporal evolution is characterised by
a state space model. Simulation experiments quantify that the sug-
gested model can be deployed to estimate the missing traffic data
with a reasonable accuracy even with a fraction of random traffic
measurements in the network. A stream of incomplete traffic data ar-
rives sequentially and the transit agencies need to estimate the traffic
density/speed in the remaining edges along with an accurate predic-
tion of the future traffic density. Moreover, one can also predict the
future traffic which in turn can be used to increase the reliability of
the public transport even in places with multiple modes of transport.
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