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ABSTRACT

Adaptive importance sampling (AIS) methods are a family of algo-
rithms which can be used to approximate Bayesian posterior dis-
tributions. Many AIS algorithms exist in the literature, where the
differences arise in the manner by which the proposal distribution is
adapted at each iteration. The adaptive population importance sam-
pler (APIS), for example, deterministically samples from a mixture
distribution and uses the local information given by the samples and
weights to adapt the location parameter of each proposal. The up-
date rules by nature are heuristic, but effective, especially in the case
that the target posterior is multimodal. In this work, we introduce a
novel AIS scheme which incorporates modern techniques in stochas-
tic optimization to improve the methodology for higher-dimensional
posterior inference. More specifically, we derive update rules for the
parameters of each proposal by means of deterministic mixture sam-
pling and show that the method outperforms other state-of-the-art
approaches in high-dimensional scenarios.

Index Terms— Monte Carlo methods, adaptive importance
sampling, mixture distributions, stochastic optimization

1. INTRODUCTION

Monte Carlo (MC) methods are computational schemes which use
the concept of random sampling to obtain numerical approximations
[1]. A well-known application of MC schemes is in Bayesian infer-
ence, where we wish to approximate the posterior distribution of a
set of unknowns given noisy observations [2]. For decades, the pre-
ferred strategy for posterior inference has been Markov chain Monte
Carlo (MCMC) sampling, an approach that constructs a Markov pro-
cess in order to sample from the posterior distribution. MCMC meth-
ods are coupled with nice theoretical guarantees, in that the Markov
process eventually converges to a stationary distribution that is the
posterior [3]. However, a significant drawback of MCMC sampling
is that the methodology may break down for complex systems (i.e.,
large number of unknowns or large sets of observed data) due to poor
mixing of the constructed Markov chain. In this setting, a strong
competitor to MCMC sampling is variational inference (VI). VI ap-
proaches the inference problem using optimization, where the goal
is to minimize the Kullback-Leibler divergence (KLD) between the
posterior distribution and a member of a family of probability dis-
tributions [4]. A strong advantage of using VI is in its scalability
for complex models and big data applications, thanks to advances

M.B. thanks the support of the NSF under Award CCF-1617986, and P.
M. D. the support of the NSF under Award CCF-1618999. The authors would
like to thank Stony Brook Research Computing and Cyberinfrastructure, and
the Institute for Advanced Computational Science at Stony Brook University
for access to the high-performance SeaWulf computing system, which was
made possible by a $1.4M NSF grant (# 1531492).

in stochastic optimization [5, 6]. Unfortunately, VI methods are not
guaranteed to converge to the true posterior. Thus, it is of utmost
interest in Bayesian signal processing to develop methodologies that
possess similar theoretical guarantees to MCMC samplers while also
obtaining faster results for complex probabilistic models in the way
VI does. A natural area of study is in hybrid methodologies which
utilize MC and optimization for scalable posterior inference.

Importance sampling (IS) is an MC methodology that allows for
approximation of some target distribution using weighted samples
generated from another proposal distribution [7]. The variance of
the IS estimator depends on the fit of the proposal to the target. This
presents a challenge in high-dimensional systems because the choice
of the proposal distribution is not straightforward. Adaptive impor-
tance sampling (AIS) implements an iterative version of IS, whereby
the proposal distribution is adapted with each iteration to better fit
the target density [8]. Numerous algorithms have been proposed in
the literature which have advanced AIS. Advances include the de-
velopment of alternative weighting schemes and effective parameter
updates for mixture proposal distributions [9, 10, 11, 12, 13]. Some
hybrid methods have even been proposed which combine MCMC
and AIS schemes [14]. Alternatively, an interesting approach is the
incorporation of stochastic optimization techniques within the AIS
framework. For example, in [15, 16] the parameters of a proposal
distribution from the exponential family were adapted to minimize
the per-sample variance of the IS estimator. Other techniques of this
flavor have been proposed [17], but little work has been done in the
context of efficiently optimizing a mixture proposal distribution.

In this work, we explore the optimization of the parameters of a
mixture proposal distribution in the context of AIS. Our contribution
is twofold. First, we show that the considered objective functions
and their gradients can be reformulated as a combination of expecta-
tions w.r.t. the mixture components separately. This allows for sim-
plicity in implementation through deterministic sampling methods,
which guarantees representation of each mixand in the computation
of the stochastic gradients. Second, we develop a novel AIS scheme
which adapts a population of proposal distributions efficiently using
stochastic optimization techniques. We show that the novel sampler
attains superior performance compared to other AIS schemes.

The paper is organized as follows. First, in Section 2, we for-
mulate the problem. Section 3 reviews preliminaries and prior work,
while Section 4 describes the novel scheme. We provide simulation
results in Section 5 and conclude the paper in Section 6.

2. PROBLEM FORMULATION

Suppose that we have a set of i.i.d. observed data y1,y2, . . . ,yN ∼
p(y|x), where yi ∈ Rdy for i = 1, ..., N and x ∈ Rdx is a vector
of unknowns. We address the problem of fully Bayesian inference,
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in which the goal is to sample from the posterior distribution,

π(x) = p(x|y) =
`(y|x)p(x)

p(y)
∝ `(y|x)p(x), (1)

where `(y|x) =
∏N
i=1 p(yi|x) is the likelihood of the unknowns,

p(x) is the prior distribution of the unknowns, and Z = p(y) is
called the evidence, which depends only on the data. We define
π̃(x) ≡ `(y|x)p(x). We wish to estimate the evidence through
IS from a proposal distribution q(x;θ). The IS estimate is,

ẐIS =
1

M

M∑
m=1

π̃(x(m))

q(x(m);θ)
, (2)

where x(1), . . . ,x(M) ∼ q(x;θ). For efficient approximation of
the target posterior, our goal is to minimize the variance of (2) by
optimizing over the proposal parameters θ.

3. PRELIMINARIES

In this section, we review IS and AIS for estimation of arbitrary
target distributions. We also summarize some advances in the field
of VI which allow for scalable approximate Bayesian inference
through stochastic optimization. Furthermore, we review a method-
ology which combines stochastic optimization and AIS.

3.1. Adaptive Importance Sampling (AIS)

IS is an MC tool used to approximate properties of statistical dis-
tributions through weighted samples drawn from proposal distribu-
tions. For example, suppose M samples are generated as follows:
x(1), . . . ,x(M) ∼ q(x;θ). If we wish to estimate an expectation
of a particular function f(x) w.r.t. to the unnormalized distribution
π̃(x), we can apply the self-normalized IS estimator,

ÎIS =
1∑M

m=1 w
(m)

M∑
m=1

w(m)f(x(m)), (3)

where w(m) = π̃(x(m))/q(x(m);θ) and the term
∑M
m=1 w

(m) is
a normalization constant. For simplicity we denote the set of nor-
malized importance weights as {w̄(m)}Mm=1. Besides point estima-
tion, there is a growing interest in applying IS in the context of fully
Bayesian inference, whereby a set of samples and their correspond-
ing normalized importance weights {x(m), w̄(m)}Mm=1 can approxi-
mate the normalized target distribution π(x),

π̂IS(x) =

M∑
m=1

w̄(m)δ(x− x(m)). (4)

The accuracy of the estimate in (4) depends on the fit of the proposal
to the target distribution, which is challenging in high dimensions.
To tackle this challenge, we can employ AIS. AIS uses a learning
algorithm to improve IS, where q(x;θ) is adapted over a set of iter-
ations. Given a set of samples drawn from q(x;θt) and their unnor-
malized weights {x(m)

t , w
(m)
t }Mm=1 for t = 1, ..., T , with T being

the number of iterations, the approximation of the target is given by,

π̂AIS(x) =
1∑T

t=1

∑M
m=1 w

(m)
t

T∑
t=1

M∑
m=1

w
(m)
t δ(x− x

(m)
t ). (5)

Many algorithms exist which use different update rules to efficiently
adapt the proposal distribution to the target. Our focus will be on
utilizing techniques in stochastic optimization which will iteratively
minimize some discrepancy measure between the proposal and tar-
get distributions.

Algorithm: Projected Stochastic Gradient Descent

1. Initialization: Select the initial parameter value θ1.
2. For t = 1, ..., T

a. Calculate the stochastic gradient g̃(θt).
b. Update the parameter value,

θt+1 = ΠC
(
θt−ηtg̃(θt)

)
.

3. Return θT+1.

Table 1: The parameter ηt denotes a decreasing learning rate (ηt →
0 as t→∞). ΠC(·) denotes the projection onto the feasible set C.

3.2. Black Box Variational Inference (BBVI)

VI approaches the approximate inference problem using optimiza-
tion. Black box variational inference (BBVI) [6] uses stochastic
optimization to minimize a discrepancy measure between the target
distribution and the proposal distribution. A common discrepancy
between probability distributions is the KLD, DKL(qθ||π). In VI,
minimizing this discrepancy measure is equivalent to minimizing the
negative evidence lower-bound (ELBO),

L(θ) = −
∫ ∞
−∞

q(x;θ) log

(
π̃(x)

q(x;θ)

)
dx, (6)

w.r.t. the proposal parameters θ. The gradient of this can be written
as an expectation w.r.t. the distribution q(x;θ),

∇θL(θ) = −Eq
[

log

(
π̃(x)

q(x;θ)

)
∇θ

(
log q(x;θ)

)]
, (7)

which can be approximated using an MC estimate with samples
drawn from q(x;θ). In BBVI, these stochastic gradients (coupled
with variance reduction tricks) [18] allow for scalable Bayesian in-
ference using optimizers such as projected stochastic gradient de-
scent (see Table 1). The optimized distribution, however, is not
guaranteed to converge to the true posterior distribution. We also
note that, for general cases, the minimization of the negative ELBO
is a nonconvex optimization problem w.r.t. θ.

3.3. Convex AdaMC

There are also algorithms that couple AIS methods with stochas-
tic optimization. For instance, an algorithm called Convex AdaMC
(CAMC) [15, 16] minimizes the Rényi divergence,

Dα(π||qθ) =
1

α− 1
log

(∫ ∞
−∞

π(x)αq(x;θ)1−αdx

)
. (8)

We note that the limiting case α = 1 corresponds to DKL(π||qθ).
It can be shown that minimizing (8) does not depend on the nor-
malization constant and we can replace π(x) with π̃(x). CAMC
implicitly minimizes the per-sample variance of the IS estimator
by minimizing a monotonic transformation of (8) for α > 1, i.e.,
exp((α − 1)Dα(π||qθ)). For the estimator in (2), the per-sample
variance can be written as

V (θ) = Eq

[(
π̃(x)

q(x;θ)

)2
]
−

(
Eq

[
π̃(x)

q(x;θ)

])2

=

∫ ∞
−∞

π̃(x)2

q(x;θ)
dx− Z2.

(9)
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Algorithm: VAPIS

1. Initialization: Set θ1,k for k = 1, ...,K.
2. For t = 1, ..., T

a. Draw N samples from K proposal distributions,

x
(n)
t,k ∼ qk(x;θt,k),

n = 1, . . . , N,

k = 1, . . . ,K.

b. Compute the deterministic mixture weights,

w
(n)
t,k =

π̃(x
(n)
t,k )

1
K

∑K
k=1 qk(x

(n)
t,k ;θt,k)

,
n = 1, . . . , N,

k = 1, . . . ,K.

c. Approximate the target distribution,

π̂t(x) =

∑t
τ=1

∑K
k=1

∑N
n=1 w

(n)
τ,kδ(x− x

(n)
τ,k)∑t

τ=1

∑K
k=1

∑N
n=1 w

(n)
τ,k

.

d. For k = 1, ...,K
i. Compute the stochastic gradient g̃(θt,k).
ii. Update the vector of proposal parameters θt,k,

θt+1,k = ΠC
(
θt,k − ηtg̃(θt,k)

)
3. Return the approximation π̂T (x).

Table 2: Proposed methodology.

The optimization problem will only depend on the first term, which
is proportional to exp(D2(π||qθ)). We can compute the gradient as,

∇θV (θ) = −Eq

[(
π̃(x)

q(x;θ)

)2

∇θ

(
log q(x;θ)

)]
, (10)

which can also be approximated using an MC estimate. Further-
more, when q(x;θ) is chosen from the exponential family (e.g.,
Gaussian), the minimization of (9) is a convex optimization prob-
lem. Coupled with off-the-shelf stochastic optimization algorithms,
we can find the optimal vector of parameters θ, which minimizes the
variance of the estimator in (2). Unfortunately, this convexity does
not hold in general for mixture proposal distributions.

4. METHODOLOGY

In this section, we introduce a novel framework for AIS in high di-
mensions. Specifically, we show that the gradients of the consid-
ered objective functions can be reformulated when mixture proposal
distributions are used to enable deterministic sampling from each
mixand. We then introduce a novel algorithm called variational
adaptive population importance sampling (VAPIS) which adapts the
parameters of a population of proposal distributions.

4.1. Reformulation of Stochastic Gradients

In general, the optimization problem we would like to solve is,

θ∗ = arg min
θ∈C

C(θ), (11)

where C(θ) denotes the objective function and C denotes the feasi-
ble set. In order to solve the minimization problem, we need access
to the stochastic gradients. We consider objective functions such that
the gradients can generalize as follows:

∇θC(θ) = −Eq
[
Φ(x,θ)∇θ(log q(x;θ))

]
= −

∫ ∞
−∞

q(x;θ)Φ(x,θ)∇θ(log q(x;θ))dx,
(12)

where the term Φ(x,θ) depends on the chosen objective function.
For the Rényi divergence, ifα = 1, we directly minimizeD1(π||qθ).
For α > 1, we minimize exp((α − 1)Dα(π||qθ)) as in [16]. This
yields the following multiplier for minimizing the Rényi divergence:

Φ(x,θ) =

(
π̃(x)

q(x;θ)

)α
, α ≥ 1. (13)

Consider a mixture proposal distribution withK mixands, q(x;θ) =∑K
k=1 ρkqk(x;θk), where ρk and θk denote the mixand weight and

parameters, respectively. In the current form, the gradient w.r.t. the
parameters of the kth mixand is given by,

∇θkC(θ) = −Eq
[
∇θk (q(x;θ))

q(x;θ)
Φ(x,θ)

]
. (14)

Suppose ∇θk (q(x;θ)) = ρkqk(x;θk)Ψ(x,θk), where Ψ(x,θk)
is a function that depends on the choice of qk(x;θk). Then, we can
alternatively write the gradient of the cost w.r.t. θk as an expectation
w.r.t. the individual mixand qk(x;θk),

∇θkC(θ) = −ρkEqk
[
Ψ(x,θk)Φ(x,θ)

]
. (15)

This refined form allows for computation of the gradients by deter-
ministically sampling from each mixand separately.

4.2. Mixture of Exponential Family Members

Consider that each mixand qk(x;θk) belongs to the exponential
family of probability distributions, i.e.,

qk(x;θk) = h(x) exp(β(θk)TT(x)−A(θk)). (16)

The gradient of such distributions w.r.t. θk is given by,

∇θkqk(x;θk) = qk(x;θk)∇θk (β(θk)TT(x)−A(θk)). (17)

Thus, we have that if qk(x;θk) is in the exponential family, then
Ψ(x,θk) = ∇θk (β(θk)TT(x) − A(θk)) and the decomposition
made to obtain (15) is possible.

4.3. Comments on Gradient Computation

Suppose that we would like to compute the stochastic gradient of
C(θ) w.r.t. θk. If we were to compute using (14), this would require
us to sample from the full mixture q(x;θ). To reduce computation,
a small mini-batch of samples from the mixture could be drawn;
however, this would also limit the representation of qk(x;θk) in the
computation of the gradient. If we use (15) to compute the gradient,
we only need to sample from qk(x;θk), guaranteeing representation
of the mixand regardless of the size of the mini-batch of samples.

4.4. Algorithm Summary

The newly proposed algorithm, called variational adaptive popula-
tion importance sampling (VAPIS) is summarized in Table 2. The
algorithm deterministically samples from an equally weighted mix-
ture distribution. We approximate the target using the so-called de-
terministic mixture weights [19, 20] allowing for a reduced-variance
solution at a higher computational cost. Parameter updates are gov-
erned by minimizing the objective function through stochastic opti-
mization. We note that the stochastic gradients g̃(θt,k) are computed
using an MC estimate of (15). Furthermore, we emphasize that step
d. of the algorithm is a trivially parallelizable task in practice. The
general algorithm incorporates projected stochastic gradient descent
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σ2 2 4 6 8 10

M-PMC 27.90 27.91 27.65 27.77 27.67
DM-PMC 7.06 9.05 13.90 16.99 19.90

APIS 1.58 3.52 9.20 14.13 18.76
VAPIS 0.05 0.04 0.18 0.23 0.84

Table 3: MSE in the estimation of Eπ[x].

σ2 2 4 6 8 10

M-PMC 496.2 480.3 500.6 419.3 415.6
DM-PMC 483.5 457.9 659.2 552.4 631.7

APIS 134.4 195.9 472.2 563.9 563.3
VAPIS 21.1 21.8 55.9 42.8 84.3

Table 4: MAE in the estimation of Z.

to solve the optimization task. Alternatively, we can employ a more
sophisticated optimization algorithm such as RMSprop (see [21] for
a review), which allows for adaptive learning rates for each compo-
nent of θk.

4.4.1. Location Parameters for a Mixture of Gaussians

Consider the optimization of the means of an equally weighted mix-
ture of Gaussians w.r.t. the objective C(θ) = exp(D2(π||qθ)).
The proposal is given by q(x;µt,Σ) = 1

K

∑K
k=1 qk(x;µt,k,Σk),

where qk(x;µt,k,Σk) = N (x;µt,k,Σk). The stochastic gradient
w.r.t. µt,k is given by,

g̃(µt,k) = −
Σ−1
k

KN

N∑
n=1

(
π̃(x

(n)
t,k )

q(x
(n)
t,k ;µt,Σ)

)2

(x
(n)
t,k − µt,k), (18)

where x
(n)
t,k ∼ N (µt,k,Σk) for n = 1, . . . , N . If we assume that

Σk = σ2
kIdx , where Idx denotes the dx × dx identity matrix, then

the computation of Σ−1
k is trivial. When we consider the algorithm

in Table 2 with only adapting the location parameters, we obtain a
method that resembles the APIS technique [12]. APIS uses locally
weighted estimates of the target mean in order to adapt the location
of each proposal. Our algorithm instead uses stochastic optimiza-
tion, which implies two key advantages. First, VAPIS is explicitly
optimizing a desired objective function, i.e., the per-sample variance
of the normalizing constant. Second, the parameter adaptations in
VAPIS can be resolved with any off-the-shelf stochastic optimiza-
tion algorithm, allowing for scalability to higher-dimensional prob-
abilistic models.

5. SIMULATIONS

In this section, we present numerical experiments to demonstrate
the performance of the proposed methodology. We simulated the
proposed VAPIS algorithm according to the update rules in Section
4.4.1 and utilized the RMSprop algorithm to run the optimization.

We considered the toy example of approximating a Gaussian
mixture in R20 of the following form:

π(x) ∝ π̃(x) =

5∑
j=1

ρ̃jN (x;mj ,Λj), (19)

where Λj = Λ̃j + 2 × I20, such that Λ̃j ∼ IW(I20, 20) for
j = 1, ...5, i.e., an inverse Wishart distribution with scale matrix
I20 and 20 degrees of freedom. We assumed that we could com-
pute π̃(x) but the parameters of the mixture were unknown. We

100 200 300 400 500 600 700 800

Iteration
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Fig. 1: Evolution of the MSE for each of the compared methods.

generated the target means asmj ∼ U([−10, 10]20) and the unnor-
malized mixture weights ρ̃j ∼ G(10, 10) for j = 1, .., 5, i.e., they
were drawn from a Gamma distribution with shape and scale param-
eters equal to 10. The objective was to estimate the normalization
constant Z =

∑5
j=1 ρ̃j = 511.3 and the target mean Eπ[x] =

1
Z

∑5
j=1 ρ̃jmj .

We tested and compared the following algorithms: the mixture
population Monte Carlo (M-PMC) [10], the population Monte Carlo
with deterministic mixture weights (DM-PMC) [20], APIS [12] and
the novel VAPIS method with different configurations. The consid-
ered error metric was the mean absolute error (MAE) for the normal-
izing constant and the mean square error (MSE) for the target mean.
For each algorithm, we used K = 100 mixands for the proposal.
We generatedM = 1000 total samples per iteration (10 samples per
mixand) over I = 800 iterations and we averaged the results over
500 MC simulations. The prior means and covariances were gen-
erated according to µ1,k ∼ U([−10, 10]20) and Σk = σ2I20 for
k = 1, ..., 100, where σ2 ∈ {2, 4, 6, 8, 10}.

Tables 3 and 4 show the results of the numerical experiment. We
can see that for each value of σ2, the proposed method outperforms
the state-of-the-art approaches. The closest competitors to VAPIS
are DM-PMC and APIS, but due to the small number of samples
generated per proposal, the update rules for DM-PMC and APIS (re-
sampling and locally weighted mean estimates) are not robust to the
high dimension of the target. VAPIS, on the other hand, performs
very well despite the small number of samples generated per pro-
posal. These results are confirmed in Fig. 1, where VAPIS clearly
outperforms the rest of the methods (under their best setting of σ2)
in terms of MSE for all choices of σ2.

6. CONCLUSIONS
In this work, we proposed a technique that embeds stochastic opti-
mization within the AIS framework. We showed that when a mix-
ture proposal distribution is utilized, the gradient of interesting ob-
jective functions, such as the variance of the IS estimate of the nor-
malizing constant of a target posterior, can be decomposed in a way
that allows for calculation of components through deterministic mix-
ture sampling. This led to a novel AIS algorithm which efficiently
adapts the parameters of a mixture distribution. We tested the new
methodology on a high-dimensional multimodal target distribution
and showed that it outperforms other state-of-the-art AIS methods.
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