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ABSTRACT

Utilizing the array processing minimum power distortionless re-
sponse (MPDR) beamformer framework, we present a new perspec-
tive on the sparse Bayesian learning (SBL) algorithm used in sparse
signal recovery. In addition to providing more insight into the SBL
algorithm, this new perspective allows us to extend the algorithm to
more general non-Gaussian priors. Finally, we use the connection
between the MPDR and the LMMSE estimator to lower the com-
plexity of the algorithm using a generalized approximate message
passing (GAMP) based LMMSE estimator. The result is a GAMP
based algorithm with improved convergence properties.

Index Terms— Compressed sensing, Bayesian learning, array
processing, approximate message passing

1. INTRODUCTION

We consider recovering a vector & € R from a noisy single
measurement vector y € R

y=Ax+te, ey

where A € RM*¥ ig agsumed to be known, and the noise is mod-
eled by white Gaussian noise as e ~ A(0,02I). We focus on
the sparse signal recovery (SSR) problem, where the undersampled
regime is considered with M < N. When x is sufficiently sparse,
and the matrix A satisfies certain conditions, accurate recovery of «
is possible through different techniques. Among the successful ap-
proaches of solving the SSR problem are Bayesian techniques [1-6],
where the distribution p(«) from which the signal = is drawn is
used with the system model in (1) to obtain a maximum a poste-
riori (MAP) or a minimum mean squared error (MMSE) estimate
of « [4-7]. In the case that p() is not known, empirical Bayesian
approaches [5-9] can be used to learn the prior while estimating the
signal . In the first part of this paper we focus on an empirical
Bayesian approach known as the sparse Bayesian learning (SBL) al-
gorithm [5], the algorithm imposes a hierarchical prior on p(z), by
imposing a Gaussian scale mixture (GSM) prior controlled by a hy-
perparameter ~ with distribution p(«). The expectation maximiza-
tion (EM) algorithm is used to estimate the hyperparameter, where
the SBL has the advantage of a closed form E-step because of its
GSM prior. Once an estimate 4 is obtained an MMSE estimate of «
can be obtained. The main ideas we present in this paper are:

1 We provide a different perspective on the E-step of the SBL algo-
rithm for a fixed «v. The new perspective uses the system model
to design an estimator that maximizes the signal to noise and in-
terference (SINR) ratio, a receiver which is known in the array
processing literature as minimum power distortionless response
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(MPDR) beamformer [10]. Using the MPDR receiver the mea-
surement vector is decoupled into AWGN estimates of the ele-
ments of . Once decoupled MMSE estimation can be performed
to obtain an estimate &.

2 The MPDR perspective of SBL allows us to exploit the decou-
pling of « by the MPDR to acquire MMSE estimates for more
general non-Gaussian priors. To demonstrate that, we examine
the non-negative SSR problem. When the MPDR approach is ap-
plied to the the non-negative SSR problem, the resulting algo-
rithm is identical to one of the versions of rectified SBL (RSBL)
from [8]. This result provides some insight into why the approxi-
mation used in [8] to derive the algorithm is justified.

3 To further demonstrate the capabilities of the MPDR framework,
we consider the case when the prior p(a) is fully known. In this
context we again demonstrate how the MPDR decoupling can be
used to obtain an MMSE estimate.

4 Finally, we use the connection between the MPDR and the
LMMSE estimator to propose a low complexity version of the
algorithm. This low complexity version is based on a general-
ized approximate message passing (GAMP) [11] implementation
of the LMMSE. The resulting algorithm enhances the conver-
gence properties of GAMP. While the algorithm shares some
properties with the vector approximate message passing (VAMP)
algorithm [12], we point out some the differences between the
two algorithms in section 5.

2. SPARSE BAYESIAN LEARNING

The SBL algorithm imposes a GSM prior on .

p(an) = /N(wn; 0, v)p(vn)dyn, ()]

where the prior of the hyperparameter p(~y, ) controls the actual prior
on x,. We will focus on the case considered in [5], when p(yn) is
a non-informative prior, and the prior on & becomes a parametrized
Gaussian, with ~ as its variance. The hyperparameter v, can be
iteratively estimated using evidence maximization, where the EM
algorithm was chosen for the SBL algorithm in [5]. Once an estimate
4 is obtained the posterior p(x|y) is approximated by p(z|y;¥),
and the mean of this posterior is used as a point estimate for . Based
on the model in (1) and the non-informative prior on vy,

1
pyleiort) = — o (ol — Aal?) @)
(2702 )
N ,TQ
n n 1 _7’"’ 4
P(@nn) U 27T’yn )z ( 2’7n> @

We will assume that the noise variance o2 is known throughout the
paper. The E-step has a closed form solution, which happens to be
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the LMMSE estimate of p(x|y; ).

p(zly;vy) = N(z; &, 2x) ®)
#=TA"(c°T+ATA") 'y (6)
¥, =L -TA"(¢°I + ATA") ' AT, @)

where I' is a diagonal matrix created using . We will refer to the
mean estimate of « by &, we also refer to the diagonal entries of X,
by 7z,,. Once the E-step is completed the M-step is carried out as:

Vn =35 + Tay, (8)

The algorithm then iterates between these two steps until conver-
gence. We will refer to this algorithm by the EM-SBL.

3. AN MPDR PERSPECTIVE OF SBL

3.1. MPDR SBL Derivation

Rather than applying the E-step directly to get an estimate of
x, we consider finding a linear estimator with weight vector w,, for
each element of « denoted by x,. The weight vector is chosen to
recover an undistorted version of z,, while minimizing the total out-
put power of the estimator, and therefore maximizing the signal to
noise ratio (SNR). Based on the system model in (1), the covariance
matrix of y is given by:

S, =(APA" 4+ 5°I) )

where P is a diagonal matrix, with the diagonal entries p,, that repre-
sent the input powers of x,,, we note here that this power is unknown
and iteratively estimating it is one of the goals of the proposed algo-
rithm. We also note, that in the case of the parametrized Gaussian
prior in (4), this power is the same as the parameter ,,, however this
does not have to be the case for other priors. With this covariance
matrix, our optimization problem becomes:

T T
argmin w, Sywn, S.t. w, an =1
w'n,

where a,, is the nth column of A. The solution to this optimiza-
tion problem can be obtained using Lagrange multipliers, and was
previously found in the MPDR receiver [10] to be:

S, an
Wy = ———— 10
" {ar S an) o
Next, we divide the proposed approach into three main steps:
A) MPDR Estimation
Applying w, to the measurement vector y, we obtain a noise cor-
rupted version of x,,

Wa Y = Tn = Tn + Un. (11)

With enough number of interfering sources (columns of A), this
noise can be justifiably modeled as Gaussian, v, ~ N(0,7.,).
Where 7, is equal to the total output power of the MPDR minus the
power of x,. The total output power of the MPDR is given by [10]
as1/a,) S, 'a, and:

T = 1/(an Sy an) — n (12)

B) MMSE Estimation
An estimate of x,, can be obtained by performing MMSE estimation

based on (11) and the prior on x,,. In the case of the parametrized
Gaussian prior in (4) this estimate becomes:

En = E{znlrn} = (rayn)/(Trn +7n) (13)
Te, = Var{xn‘rn} = (Trn’Yn)/(Trn + 'Yn) (14)

C) Power and Prior Updates
Using the estimate Z,, the power estimate p,, can be updated by:

pn =E{a}} = dh + 7, (15)

Since the model assumes an unknown hyperprameter +,,, the esti-
mates from the MMSE step are used to update it. The update is
identical to the p,, power update in (15), because based on the as-
sumed prior the two quantities are the same. The algorithm then it-
erates between estimating & and 7, and between updating the pow-
ers/hyperparameters until convergence, we refer to this algorithm as
MPDR-SBL. It is worth mentioning that in the context of source lo-
calization, [13] proposed an algorithm that iteratively estimates the
power of the sources using an MPDR estimator, however no prior
was assumed for the sources, and there was no MMSE step in the
algorithm.

General prior case: In the case that a different prior is assumed on
x, say for example a Laplacian scale mixture (LSM) [4, 14] was im-
posed on z, then the MPDR estimation and power update steps
remain unchanged. While the MMSE estimation in (13) and (14)
will change based on the LSM prior.

3.2. MPDR-SBL VERSUS EM-SBL

In this section we show the equivalence of the derived algo-
rithm to the original EM-SBL [5]. In the EM-SBL algorithm, the
E-step consists of performing an LMMSE estimate on & to obtain
E{x|y;~}. Once an estimate on « is obtained, the M-step in the
EM-SBL algorithm given in (8), is equivalent to the updates given in
(15) for the powers of p of « and the hyperparameters ~y of the prior
p(x). Based on that, we only need to show that the LMMSE estimate
used in the EM-SBL is equivalent to the MPDR estimate, followed
by an MMSE estimate of x,,. Because v and p are equivalent in
the case of the assumed prior of SBL, in the following steps we will
replace p, in (9) with v, to show the equivalence of the MPDR-
SBL and the EM-SBL. We start with the mean estimate of the two
algorithms. In the MPDR-SBL case, the mean estimate of each x,,
is given by (13). We note from (12) that 7, + v, = 1/a, Sy_lan.
Therefore the estimate from (13) is rewritten as,

&n = (yrn)/(1/an Sy an)
= (mwny)/(1/an Sy an) = man Sy 'y, (16)
which is identical to the mean estimate of x,, in (6) when S, =
(6T + AT AT). Next we show that the variance estimate obtained

in the MPDR-SBL by the MPDR then MMSE estimation is equiva-
lent to (7).

1 1-— nazsflan
Top = ey — = ——n v O ()
al Sy tan ay Sy an
Tra Yn _
Ton = I =y =420 S, an, (18)

l/aISy_lan

which is identical to the diagonal of 3, given in (7). This shows that
the MPDR-SBL is exactly equivalent to the EM-SBL.

The MPDR approach offers a new perspective on the SBL al-
gorithm, where the algorithm starts with an assumption of the input
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powers of the vector «, then uses an estimator to maximize the SNR
based on these assumed powers, followed by an MMSE estimator
based on the prior. Once an estimate of @ is obtained, this estimate
is used to update the input power, as well as the unknown prior pa-
rameters. We next show how this concept can be extended to more
general priors.

4. EXTENSION TO GENERAL PRIORS

4.1. Rectified Sparse Bayesian Learning

The rectified SBL algorithm was proposed in [8] to address the
nonegative SSR problem, which is similar to the problem in (1) with
non-negativety constraints on x. Instead of the parametrized GSM,
[8] proposed a “rectified”” non-negative GSM prior on x, given by:

P(@nlvn) = N (@n;0,7m), (19)
N (203 0,7n) = 2N (230, v )u(an), (20)

Similar to the EM-SBL, [8] uses the EM algorithm to estimate
the hyperparameter -y, and then uses the approximated posterior
p(x|y;4) to get an estimate of x. Unlike the SBL algorithm
p(x|y;y) does not have a closed form solution, and therefore [8]
used a number of techniques to approximate it,

plalyi) = ey exp(—5 (@ —#) 5 @ - @), @D

where & and ¥ ! are the same as the ones given in (6) and (7). The
reason p(x|y;-y) cannot be obtained in closed form is because ¢(y)
does not have a closed form expression. One of the proposed approx-
imations was to assume that ¥ * is a diagonal matrix which allows
the posterior distribution to decouple into a product of marginals
P(Zn|y;n) x /\/R(xn; Zn, Tz, ). Based on this decoupling, es-
timates for Z,, = E{zy|y;vn} and 7z, = var{z,|y;y»} can be
easily obtained by the mean and variance of the rectified Gaussian
distribution and are given in [8]. We now show how we can extend
the MPDR-SBL to the non-negative case using the prior in (19). We
will show how the derived algorithm is identical the diagonal ap-
proximation used in [8]. Therefore, we offer some insight into why
the diagonal approximation given in [8] is justified.

Similar to the MPDR-SBL case, we construct the covariance
matrix from (9) using p, values. We point out here that similar to
the SBL case, p happens to correspond to the hyperparameter vector
~ and can be used interchangeably.

S, = (ATAT +°1) (22)

We apply the MPDR estimation step in (11) and (12) to estimate 7,
and 7,,. We then perform the MMSE estimation step. Using the
prior from (19) and the MPDR output in (11),

P(@nlrn) o< N (@n; 0,70 )N (@5 7, 7r,) (23)
x NE (Tn; En,y Tan) 24)
Zn =EB{zn|rn}, Teon, = var{za|ra}, (25)

where (24) is obtained using the rule for the multiplication of two
Gaussian pdfs. We can see that the posterior approximation obtained
in (24) is identical to the one obtained in [8] for p(x, |y; v ). Based
on that, the estimates obtained in (25) are also identical to the ones
obtained in [8]. Given the approximated posterior p(zn |rn;yn) We
update the estimates of the input powers, and the hyperparameters:

Yo =pn =E{a’} = @5 + 7a, (26)

Which is also identical to the M-step update in the RSBL given
in [8]. Therefore, the decoupling of & elements into AWGN com-
ponents using the MPDR can provide an explanation as to why the
diagonal approximation that decoupled the posterior in RSBL is a
justified approximation. We mention here that despite the fact that
assumed prior on @ is not zero-mean anymore, numerical results
suggest that the AWGN assumption in (11) is still valid. This is
probably due to the fact that the MPDR estimator of z,, is suppress-
ing the interference from all the other elements of . However, more
rigorous analysis of the algorithm’s performance and convergence is
left for future work.

4.2. Bernoulli-Gaussian Priors

We now consider the case of knowing the prior on x, with-
out having to estimate its hyperparametres. An example of such a
prior is the Bernoulli-Gaussian prior [6, 15] for the SSR problem,
and the non-negative Bernoulli-Gaussian prior for the non-negative
SSR problem [7]. First we apply the MPDR estmation step to find
the estimates for r, and 7., using (11) and (12). Then we ex-
ploit the similarity between the decoupling of x into AWGN cor-
rupted x,s in the proposed MPDR formulation and in the general-
ized approximate message passing (GAMP) algorithm [11], and so
we will not rederive E{xy,|r,} or var{z,|r,} for the MMSE es-
timation. Instead we will use the GAMPMatlab package directly
from [16] to perform these estimates. Once the estimates are ob-
tained, the power updates step is performed, where p,s are up-
dated according to (15). Based on the power updates another it-
eration is performed until convergence. we will refer to the algo-
rithm by Bernoulli-Gaussian MPDR (BG-MPDR) and non-negative
Bernoulli-Gaussian MPDR (NN-BG-MPDR). The performance of
the NN-BG-MPDR algorithm is studied in section 6.

5. GAMP BASED LOW COMPLEXITY ALGORITHMS

A low complexity implementation of the SBL algorithm was
proposed in [17]. The algorithm used the GAMP algorithm to effi-
ciently implement the E-step, and was called Gaussian GAMP SBL
(GGAMP-SBL). When a non-Gaussian prior is used with GAMP,
the algorithm faces convergence issues for non-i.i.d.-Gaussian
A [18-20]. Because it uses a parametrized Gaussian prior on
x, one of the main advantages of the proposed algorithm in [17],
was that the GGAMP based E-step was gauranteed to converge to
the correct LMMSE mean estimate & and an approximate variance
T even when the matrix A is not i.i.d-Gaussian. The convergence
gaurantee was proven for Gaussian priors in [20], when a technique
called damping is used [19,20]. We use the connection between
the LMMSE estimator and the MPDR to implement the MPDR
estimation step in (11) and (12), using the GGAMP algorithm [20].
we do not restate the GGAMP LMMSE algorithm here due to space
limitation, but details of the algorithm can be found in the E-step
of table I in [17]. Assuming the LMMSE estimate p,, and an
approximate variance 7,, are obtained using GGAMP, r,, and 7,
can be found as follows:

Tro = PnTn )/ (Pn = Tnr) 7o = (pn, 7))/ (7o) 27)

Although the estimates of 7. are approximate [21], we still expect
the algorithm’s performance to be comparable to the higher com-
plexity version. This was previously shown numerically in [17] in
the case of GGAMP-SBL, and it will be shown in our numerical
results section as well. This allows us to have a GAMP based al-
gorthim that does not diverge for non-i.i.d.-Gaussian A and general
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priors, an outcome that was only available to Gaussian and Gaussian
scale mixture priors [20].

5.1. GGAMP Based MPDR Approach Versus VAMP

The vector approximate message passing algorithm (VAMP)
[12] was developed to overcome convergence issues experienced
by AMP algorithms. Since VAMP can produce Bayesian estimates
based on given priors, while achieving low complexity and im-
proved convergence when A is non-i.i.d.-Gaussian, VAMP holds
some similarities to the proposed approach in this section which we
refer to by (GGAMP-MPDR). While more extensive studies need to
be performed to compare the two algorithms, we mention here two
main differences between VAMP and the GGAMP-MPDR:

1 VAMP can only handle i.i.d. priors, therefore it won’t be able to
have a scale mixture as its assumed prior on a, making it unable
to handle hierarchical priors.

2 VAMP requires a one time SVD decomposition at the beginning
of the algorithm while the proposed GGAMP-MPDR does not.
Because GGAMP-MPDR does not need to process the full matrix
A, the MPDR part can be divided into parallel sub-algorithms,
each of which uses sub-columns of A. This can be useful when
the size of A is larger than memory limitations at hand.

6. NUMERICAL RESULTS

In this section we present some numerical results based on the
non-negative SSR problem in section 4.1. The study is conducted
with NV = 1000, M = 500 and K = 200 non-zero entries, where
the non-zero entries are drawn from a rectified Gaussian distribution
with zero mean and unit variance. The study is conducted over a
range of correlation of the columns of A to show how the new frame-
work improves the convergence properties compared to the GAMP
algorithm when A is non-i.i.d..-Gaussian. We use the normalized
mean squared error (NMSE) between the original signal « and the
recovered estimate & as a performance measure for comparison.

The study compares a number of algorithms, where it consid-
ers the MPDR-RSBL algorithm proposed in 4.1, also referred to as
the diagonal approximation DA-RSBL in [8]. In addition to that,
we consider using the proposed MPDR framework with complete
knowledge of the prior by using the NN-BG-MPDR algorithm from
4.2. We also consider the GAMP based low complexity versions of
the two algorithms where we refer to them by MPDR-RSBL-LC and
NN-BG-MPDR-LC. We compare these proposed algorithms against
the GAMP Based non-negative Bernoulli-Gaussian algorithm from
[7] referred to by NNGMAMP, and also against the VAMP based
Bernoulli-Gaussian algorithm, where both algorithms assume full
knowledge of the prior. For reference we also include a ”Genie”
algorithm, that is provided with the true support of « so it can per-
form an MMSE estimate on the non-zero entries.

There are a number of observations we can see in Fig. 1. First,
when studying the convergence behavior against the column cor-
relation of A, we are particularly interested in the GAMP based
low complexity algorithms, MPDR-RSBL-LC and BG-MPDR-LC.
We can clearly see that both algorithms offer enhanced convergence
compared to the GAMP based NNGMAMP algorithm which di-
verges at higher correlation. We compare the performance of BG-
MPDR-LC to VAMP since they are both based on the same prior.
We notice that BG-MPDR-LC is able to offer similar, and in some
cases better performance compared to VAMP.

a0l —=— BG-VAMP
—&— NNGMAMP
—+— MPDR-RSBL
—#%— MPDR-RSBL-LC
—6— NN-BG-MPDR
—— NN-BG-MPDR-LC

45 1

50

NMSE

" 1 . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Correlation Coeficient p

Fig. 1. NMSE Versus Column Correlation Comparison

We can also see that the lower complexity approximations of the
algorithms provide comparable results to the full complexity ones.
Comparing BG-MPDR-LC with BG-MPDR, there is a slight degra-
dation in performance at high correlations. On the other hand, the
Low complexity MPDR-RSBL-LC algorithm is performing slightly
better than the full complexity MPDR-RSBL.

Finally, we notice how the full knowledge of the prior gives an
advantage in performance over the hierarchical model that assumes
no knowledge of the prior.

We also highlight the complexity reduction offered by the
GGAMP implementation by plotting the runtimes of different al-
gorithms. From Fig. 2 we can see that the GGAMP-MPDR im-
plementation offers significant runtime reduction compared to the
full MPDR algorithms. Based on previous results in [17], this re-
duction is expected to become more significant as the problem size
increases. The runtimes of the two low complexity algorithms are
comparable to VAMP and are slightly better than NNGMAMP.

—#— BG-VAMP
121 |—&— NNGMAMP A
—+— MPDR-RSBL
10} |—%—MPDR-RSBL-LC b
@ +——©—NN-BG-MPDR
© 8 |——NN-BG-MPDR-LC 4
£
S 6r 7
[id
4 & PN
Ps §
s 2 N
Y Lol Ll
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Correlation Coefficient p

Fig. 2. Runtime Versus Column Correlation Comparison

7. CONCLUSIONS

In this paper we presented a different perspective on the SBL al-
gorithm. The new perspective uses an MPDR estimator to decouple
the measurements into AWGN components. With this perspective
we were able to use the MPDR concept with more general priors.
We were able to use the relationship between the MPDR and the
LMMSE estimator to introduce lower complexity algorithms, result-
ing in a GAMP based algorithm with improved convergence. Future
work should include a more extensive comparison of the low com-
plexity algorithm to VAMP to better understand the similarities and
differences.
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