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ABSTRACT

Many problems in statistical signal processing involve tracking the
state of a dynamic system that evolves on a Stiefel manifold. To this
aim, we introduce in this paper a novel particle filter algorithm that
approximates the optimal importance function on the Stiefel mani-
fold and is capable of handling nonlinear observation functions. To
sample from the required importance function, we develop adapta-
tions of previous MCMC algorithms. We verify via numerical sim-
ulations that, in a scenario with a strongly nonlinear observation
model, the new proposed method outperforms existing algorithms
that use the prior importance function at the cost, however, of in-
creased computational complexity.

Index Terms— Stiefel manifold, Particle filters, MCMC.

1. INTRODUCTION

Most state estimation algorithms found in the literature assume that
the unknown state vector lies on a linear Euclidean space. How-
ever, many engineering applications, such as attitude estimation in
navigation systems [1], image processing [2], robotics [3] and dig-
ital communications [4], [5], lead to models with dynamic systems
whose states are constrained to the Stiefel manifold Vk,l, i.e. the
space of the real k × l orthonormal matrices, of which the unit (hy-
per)sphere [5] and the special orthogonal group SO(n) [6] are spe-
cial cases, see also [7] for an extended list of references to practical
signal processing problems where the Stiefel manifold constraint ap-
plies.

A particle filter [8] algorithm for state estimation on the Stiefel
manifold was introduced in [9] using a data-independent (prior)
importance function and assuming a linear observation model. In
this paper, we extend the work in [9] in two ways. First, we consider
a scenario in which the observations are nonlinear functions of the
state contaminated by additive Gaussian noise. Second, rather than
using the prior importance function, we propose a novel matrix
Fisher-Bingham [10] parametric approximation to the optimal (data-
driven) importance function, which is the equivalent, on Vk,l, to
the Gaussian approximation to the optimal importance function em-
ployed in [11–15] for particle filters specified on RL with arbitrary
nonlinear observation models. This paper also generalizes to an ar-
bitrary Stiefel manifold the results in [5], which considered only the
special case in which states are constrained to the unit hypersphere.

The paper is divided into 5 sections. Sec. 1 is this introduc-
tion. In Sec. 2 we describe the problem setup and briefly review
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how it has been tackled by [9]. In Sec. 3, we detail the new pro-
posed algorithm: first, we derive the closed-form expression of the
parameters of the matrix Fisher-Bingham approximation to the op-
timal importance function; next, we propose a Gibbs sampler [16]
to draw from the proposed approximation and discuss a numerical
method to compute its normalization constant. In Sec. 4, we present
computer experiments with simulated data to assess the performance
of the proposed method and compare it to the performance of the
algorithm in [9]. Finally, we present our conclusions and discuss
possible future work in Sec. 5.

2. PROBLEM SETUP

Let Sn denote the state of a system at the time instant n, supposed to
evolve on the Stiefel manifold Vk,l, defined as the set {V ∈ Rk×l :
VTV = Il}, k > l, where Il is the l× l identity matrix. We assume
that

Sn|Sn−1 ∼ vMF(Sn|κSn−1), (1)

i.e., conditioned on Sn−1, Sn has a matrix Von Mises-Fisher distri-
bution (vMF) [17, p. 31], whose probability density function (p.d.f.)
is defined as

vMF(Sn|κSn−1) =
etr
(
κSTn−1Sn

)
0F1

(
k
2
, κ

2

4
STn−1Sn−1

) , (2)

where etr stands for the exponential of the trace of a square matrix,
κ ∈ R+ is a fixed hyperparameter, and 0F1 is the hypergeometric
function with matrix argument [17].

We assume that {Sn} gives rise to the observation sequence
{Yn}, Yn ∈ Rk×l, such that

Yn|Sn ∼ Nk,l(Yn|G(Sn),Ω,Γ), (3)

where G : Rk×l → Rk×l is a possibly nonlinear function, and Nk,l

is a matrix normal distribution on Rk×l, defined as [9] [18]

Nk,l(Yn|G(Sn),Ω,Γ) =

etr
[
− 1

2
Ω−1(Yn −G(Sn))TΓ−1(Yn −G(Sn))

]
(2π)kl/2|Ω|k/2|Γ|l/2

, (4)

where Ω ∈ Rl×l and Γ ∈ Rk×k are symmetric positive-definite
matrices.

We intend to develop a particle filter [8] to approximate the
states’ posterior probabilities as

Pr({S0, · · · ,Sn} ∈ ∆|Y0, · · · ,Yn) ≈
Q∑
q=1

w(q)
n δ

S
(q)
0 ,··· ,S(q)

n
(∆),

(5)
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where ∆ is a subset of Vn+1
k,l , the Cartesian product on n+ 1 copies

of Vk,l, δx(X) is a Dirac measure, defined as 1 if x ∈ X and 0

otherwise, S
(q)
j , 0 ≤ j ≤ n are the so-called particles, sequen-

tially sampled from an arbitrary p.d.f. called importance function as
S
(q)
n ∼ π

(
Sn|S(q)

n−1,Yn

)
, Q � 1 is the number of particles, and

w
(q)
n are the particle weights, which are recursively evaluated as [8]

w(q)
n ∝ w

(q)
n−1

p(Yn|S(q)
n )p(S

(q)
n |S(q)

n−1)

π
(
S
(q)
n |S(q)

n−1,Yn

) , (6)

where p(·) denotes the p.d.f. of the indicated variates and the symbol
∝ denotes “proportional to” with the implied proportionality con-
stant such that

∑Q
q=1 w

(q)
n = 1.

Reference [9] introduced a particle filtering algorithm for the
signal model given by (1)-(3) restricted to G(Sn) = Sn and using
the prior importance function, i.e., sampling the particles as

S(q)
n ∼ p

(
Sn|S(q)

n−1,Yn

)
= vMF(Sn|κS

(q)
n−1). (7)

The restriction on G can be trivially lifted, leading to the weight
update equation

w(q)
n ∝ w

(q)
n−1Nk,l(Yn|G(S(q)

n ),Ω,Γ). (8)

To generate samples from the vMF p.d.f., Ref. [9] employed the
rejection method described in [17].

3. PROPOSED METHOD

Instead of sampling particles from the data-blind prior importance
function, we propose to use the so-called optimal importance func-
tion [8], i.e., sample S

(q)
n according to

S(q)
n ∼ p(Sn|Yn,S

(q)
n−1)

=
p(Yn|Sn)p(Sn|S(q)

n−1)∫
Vk,l

p(Yn|Sn)p(Sn|S(q)
n−1)dVk,l(Sn)

, (9)

where dVk,l(Sn) represents the volume element on Vk,l. The
weights are then updated as

w(q)
n ∝ w

(q)
n−1

p(Yn|S(q)
n )p(S

(q)
n |S(q)

n−1)

p(S
(q)
n |Yn,S

(q)
n−1)

. (10)

Unfortunately, the integral in the denominator of (9) can only be an-
alytically evaluated if G(Sn)1 is a linear function. Thus, we propose
to approximate (9) by linearizing G(Sn) around Sn−1, i.e.,

g(sn) ≈ g(sn−1) + J(sn−1) [sn − sn−1] , (11)

where sn , vec(Sn), g(sn) , vec(G(Sn)), the Jacobian matrix

[J(sn−1)]kl ,
∂[g(s)]k
∂[s]l

∣∣∣
s=sn−1

and [·]a(b) denotes the elements of

a vector (matrix).
It can be verified [18] that (3) implies that

P (Yn|Sn) = p(yn|sn) = Nkl(yn|g(sn),Σ), (12)

1For readability, we do not explicitly indicate in the sequel the depen-
dence of the quantities with respect to the particle index (q) unless strictly
necessary.

where Nkl stands for a kl−variate vector Gaussian p.d.f., Σ =
Γ ⊗ Ω, and yn , vec(Yn). Substituting (11) and (12) into (9)
and exploring the fact that tr(UTV ) = vec(U)T vec(V ), where tr
denotes the trace operator, it follows that

p(Yn|Sn)p(Sn|Sn−1) ≈ c−1
MF (κSn−1)c−1

N (Σ) exp

{
−1

2

[ỹn − J(sn−1)sn]T Σ−1 [ỹn − J(sn−1)sn] + κsTn−1sn
}
, (13)

where ỹn , yn−g(sn−1)+J(sn−1)sn−1, cN (Σ) = (2π)
kl
2 |Σ|

1
2

= (2π)
kl
2 |Ω|

k
2 |Γ|

l
2 , and cMF (κSn−1) is the normalization con-

stant for the Von Mises-Fisher p.d.f, defined in the denominator of
the right-hand side (r.h.s.) of (2). Rearranging terms, the r.h.s. of
(13) can be rewritten as

c−1
MF (κSn−1)c−1

N (Σ) exp

{
−1

2
ỹTnΣ−1ỹn +

[
ỹTnΣ−1J(sn−1)+

κsTn−1

]
sn + sTn

[
−1

2
J(sn−1)TΣ−1J(sn−1)

]
sn

}
(14)

= c−1
MF (κSn−1)c−1

N (Σ) exp

{
−1

2
ỹTnΣ−1ỹn

}
·

exp

{
tr

([
vec−1

(
J(sn−1)TΣ−1ỹn

)
+ κSn−1

]T
Sn

)
+

sTn

[
−1

2
J(sn−1)TΣ−1J(sn−1)

]
sn

}
, (15)

where vec−1 denotes the inverse of the vectorization operator.
The expression (15) can be recast as

c−1
MF (κSn−1)c−1

N (Σ) exp

{
−1

2
ỹTnΣ−1ỹn

}
FB(Sn|An,Bn),

(16)

where FB stands for the matrix Fisher-Bingham p.d.f. on Vn,k, de-
fined as [10]

FB(Sn|An,Bn) =
exp

{
tr(AT

nSn) + vec(Sn)TBnvec(Sn)
}

cFB(An,Bn)
,

(17)

where cFB(An,Bn) is the matrix Fisher-Bingham p.d.f. normal-
ization constant and

An , vec−1(ỹTnΣ−1J(sn−1)) + κSn−1, (18)

Bn , −1

2
J(sn−1)TΣ−1J(sn−1). (19)

Plugging (16) into (9) and noting that ỹn, An, and Bn do not depend
on Sn, the integral in the denominator of (9) can be evaluated by
simply dropping the Fisher-Bingham density in (16). Therefore, as
a result of the approximation (11), we can write

p(Sn|Yn,S
(q)
n−1) ≈ FB(Sn|A(q)

n ,B(q)
n ), (20)

and propagate the weights, in turn, as

w(q)
n ∝ w

(q)
n−1

vMF(S
(q)
n |κS

(q)
n−1) Nk,l(Yn|G(S

(q)
n ),Ω,Γ)

FB(S
(q)
n |A(q)

n ,B
(q)
n )

.

(21)

5043



To evaluate (20) and (21), we developed methods to generate sam-
ples from the matrix Fisher-Bingham p.d.f. and compute its normal-
ization constant, which are discussed respectively in Secs. 3.1 and
3.2.
Remark It is worth noting that when l = 1, Vk,l reduces to the unit
k − 1 sphere Sk−1. In that case, if the observation yn is defined as
a scalar function of sn and Σ = σ2, An and Bn (Eqs. 18 and 19)
equal the parameters an and Bn for a vector Fisher-Bingham p.d.f.
derived in [5].

3.1. Sampling from a matrix Fisher-Bingham p.d.f.

As pointed out in [19], the most convenient methods to generate sam-
ples from a matrix Fisher-Bingham p.d.f. are based on MCMC [16].
Although [20] describes a general method to generate samples for
p.d.f’s on the Stiefel manifold, it cannot be easily extended to draw
samples from (17). Therefore, we adapted the algorithm introduced
in [21, Sec. 3.3], originally developed for the matrix Bingham-Von
Mises-Fisher distribution2, as follows: under the restriction that Bn

is a block-diagonal matrix (which, as shown in Sec. 4, can be satis-
fied depending on G and Σ), we can write

FB(Sn|An,Bn) ∝
l∏

m=1

exp
(
An[,m]TSn[,m]+

Sn[,m]TBn(m)Sn[,m]
)
, (22)

where [,m] stands for the m−th column of a matrix and B(m) ∈
Rk×k denotes the m−th block of the diagonal of Bn.

As the columns of Sn are orthogonal with probability 1, we can
write Sn = [Nz Sn[,−1]], where Sn[,−1] is the matrix formed by
removing the first column of Sn, N ∈ Rk×(k−l+1) is an orthonor-
mal basis for the null space of Sn[,−1], and z is a (k − l + 1)
unit-norm column vector. The conditional p.d.f. of z is then given
by [21]

p(z|Sn[,−1]) ∝ exp
(
An[, 1]TNz + zTNTBn(1)Nz

)
, exp(ãz + zT B̃z), (23)

which is a Fisher-Bingham density on the unit sphere [22].
As shown in [21], a Markov chain in Sn with stationary p.d.f.

FB(Sn|An,Bn) can be obtained via the Gibbs sampler [16] de-
fined as follows:

Given S<j>n = S, the j−th element of the chain, compute steps 1
to 4 for each m ∈ {1, . . . , l} in a random order:

1. compute N, an orthonormal basis for the null space of S[,−m];

2. compute ã = An[,m]TN and B̃ = NTBn(m)N;

3. sample z from a Fisher-Bingham density on the unit sphere with
parameters ã and B̃ via the algorithm introduced in [5, Sec. 4.1].

4. set S[,m] = Nz.

Set S<j+1>
n = S.

2The algorithm of [21, Sec. 3.3] cannot be directly applied to draw sam-
ples from (17) since, for the problem at hand, it is not possible to represent
Bn as a Kronecker product of two matrices.

3.2. Computation of the matrix Fisher-Bingham p.d.f. normal-
ization constant

To update the weights (Equation 21), it is necessary to compute the
normalization constants3

cFB(An,Bn) ,∫
Vk,l

exp
{

tr(AT
nS) + vec(S)TBnvec(S)

}
dVk,l(S), (24)

cMF (kSn−1) ,
∫
Vk,l

exp
{

tr(κSTn−1S)
}
dVk,l(S),

= cFB(kSn−1,0). (25)

Although the saddlepoint approximation method introduced
in [10] could be used to evaluate (24), we verified experimentally
that the first-order approximation was not accurate enough, while
the second- and third-order approximations required excessive com-
puter runtime. Therefore, following the reasoning of the Monte
Carlo algorithm implemented in [10]4, we developed a quasi-Monte
Carlo method [23] to approximate (24). This method generates low-
discrepancy uncorrelated Gaussian random vectors which, when
mapped to Vk,l, result in uniformly distributed samples that are used
to approximate the required integral via (26). The algorithm runs as
follows:

A. Generate samples uniformly distributed on Vk,l:

1. Generate a sample αi of a k−dimensional low-discrepancy [23]
Sobol sequence, uniformly distributed on [0 1]k;

2. Compute [βi]r = Φ−1([αi]r), 1 ≤ r ≤ k, where Φ−1 denotes
the (normalized) Gaussian inverse cumulative distribution function;

3. Evaluate xi = βi/||βi||;

4. Take x1 as the first column of the matrix X;

5. To compute the next l − 1 columns of X, repeat steps 1-3, apply
the Gram-Schmidt method to xi to obtain the component orthogonal
to the previous columns and, if its norm is above an arbitrary thresh-
old (set to 10−6), normalize it (as in step 3). Otherwise, discard the
result and repeat steps 1-3;

6. Return the matrix X.

B. Compute the quasi-Monte Carlo Estimate:

Approximate (24) as

cFB(An,Bn) ≈ Vol(Vk,l)·

1

NS

NS∑
i=1

{
tr(AT

nX<i>) + vec(X<i>)TBnvec(X<i>)
}
, (26)

where NS is the number of samples, X<i> is the i−th sample gen-
erated by the procedure A, and

Vol(Vk,l) =
2lπkl/2

Γl(k/2)
(27)

3Note that (25) can also be evaluated as a matrix hypergeometric function
(Equation 2), which also demands intensive numerical computations.

4In the reference’s supplementary material, file
stiefel/logNormConstSP.m.
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is the volume of Vk,l [24], where Γm(a) , πm(m−1)/4∏m
i=1 Γ(a−

(i− 1)/2) and Γ stands for the gamma function.

3.3. Computation of the weighted averages on the Stiefel mani-
fold

To compute an estimate Ŝn given the particle approximation to the

posterior probabilities of the states
{
w

(q)
n ,S

(q)
n

}Q
q=1

, one could use

the heuristic procedure described in [9], which consisted of comput-
ing the average S̄n ,

∑Q
q=1 w

(q)
n S

(q)
n and projecting S̄n onto Vk,l

using the polar decomposition [17]. Ideally, however, one would es-
timate the state as a Karcher mean [25], defined as the value of Ŝn
that minimizes the weighted mean square geodesic distance to the
particle set (see, e.g., [5, Sec. 4.2]). This computation requires the
calculation of Stiefel manifold’s exponential and logarithmic maps.
Although these computations can be performed via the algorithms
recently introduced in [26], they revealed to be computationally too
complex for our aim. As a compromise, we evaluated the weighted
averages over the Stiefel manifold adapting the method described
in [27] as

S<i+1>
n =MS<i>

n

(
Q∑
q=1

w(q)
n M−1

S<i>
n

(
S(q)
n

))
, i ≥ 0 (28)

where S<i>n denotes the i−th estimate of the weighted average, with
S<0>
n chosen as a random element of the particle set, and M and
M−1 are the orthographic retraction and lifting maps [27], respec-
tively, whose computation is far less expensive than that of the ex-
ponential and logarithmic maps. The algorithm of (28) was run until
‖S<i+1>

n − S<i>n ‖F < 10−6, where ‖ · ‖F denotes the Frobenius
norm. When the algorithm stops, the estimate Ŝ<i+1>

n is taken as
S<i+1>
n .

4. NUMERICAL EXPERIMENT

To evaluate the performance of the algorithm proposed in Sec. 3,
we performed a numerical simulation consisting of 150 independent
trials. In each trial, we processed 100 consecutive synthetic data
samples generated from the model (1)-(3). For comparison, we ran
in the same setup the algorithm described in [9]. The particle filters
used Q = 300 particles and performed systematic resampling [8]
at each time step; the particles were initialized with samples from a
uniform p.d.f. on the Stiefel manifold, and the initial weights calcu-
lated accordingly.

We assumed that the function G acts elementwise on its argu-
ment and has the same expression for all entries, i.e., [g(sn−1)]i
= [g([sn−1]i)]i , g([sn−1]i). As a consequence, the Jaco-
bian J(sn−1) is a diagonal matrix, whose entries are given by

[J(sn−1)]ii = ∂g([s]i)
∂[s]i

∣∣∣
s=sn−1

. We also assumed that the obser-

vation noise entries are decorrelated, such that Ω , Il, Γ , Ikσ
2

and, consequently, Σ = Iklσ
2. As a result, Bn is diagonal. The

parameters were set to κ = 150, σ2 = 0.05, k = 3 and l = 2.
To sample from the matrix Von Mises-Fisher p.d.f., we used the

algorithm described in [21, Sec. 2.2]. To draw samples from the
matrix Fisher-Bingham p.d.f., in turn, the algorithm of Sec. 3.1 ran
50 Gibbs iterations. To evaluate the matrix p.d.f’s normalizations
constants (Sec. 3.2), we used NS = 105 pseudo-random samples,
which were computed at initialization and reused in all function
calls. The algorithm’s performance was evaluated in terms of the

time
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Fig. 1. Mean geodesic distance for the proposed algorithm (Sec. 3)
and that of Tompkins et al. [9] as a function of time, for distinct
nonlinear observation functions g(x).

mean geodesic distance from the true state Sn to the estimated state
Ŝn (Sec. 3.3), defined as [28]

d(Sn, Ŝn) = ‖Exp−1
Sn

(Ŝn)‖F , (29)

where Exp−1
Sn

(·) is the logarithmic map [26] of the Stiefel manifold
evaluated at Sn.

Figure 1 displays the results obtained for g(x) = 0.4x+ 0.6x2

(top) and g(x) = 0.6x + 0.4x2 (bottom). Note that, for the for-
mer expression, the observations will often be positive, while for
the latter, they will more frequently follow the state’s true signal.
As one may observe, for stronger nonlinearity (top), the proposed
method exhibited an asymptotic error about 30% smaller than the
method of [9], which uses the prior importance function, at the cost
of increased computational complexity: in a similarly optimized ex-
ecution setup, each realization of the proposed algorithm took 451s,
while the algorithm of [9] required 5.4s. On the other hand, for the
softer nonlinearity (bottom), the proposed method exhibits no statis-
tically significant steady-state performance advantage.

5. CONCLUSIONS

We introduced in this paper a new particle filtering algorithm to es-
timate the states of a dynamic system that evolves on the Stiefel
manifold. Although the optimal importance function is intractable
when the observation function G is nonlinear, by linearizing this
function around the previous state estimate, the optimal importance
function could be approximated as a matrix Fisher-Bingham den-
sity. As we verified experimentally, for certain choices of G, the
proposed method is capable of outperforming a previous approach
that uses the prior importance function, at the expense, however, of
increased computational complexity. In particular, the advantage of
using the optimal importance function in lieu of the prior was more
evident in our simulations in a scenario with stronger nonlinearity in
the observation model.

Most of the computational complexity of the proposed method is
related to drawing samples from and computing normalization con-
stants for the matrix Fisher-Bingham density. As future work, we
intend to investigate further these issues with the goal to reduce com-
plexity.
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