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ABSTRACT

In this paper, we develop a novel method for approximate
continuous-discrete Bayesian filtering. The projection filtering
framework is exploited to develop accurate approximations
of posterior distributions within parametric classes of proba-
bility distributions. This is done by formulating an ordinary
differential equation for the posterior distribution that has the
prior as initial value and hits the exact posterior after a unit of
time. Particular emphasis is put on exponential families, espe-
cially the Gaussian family of densities. Experimental results
demonstrate the efficacy and flexibility of the method.

Index Terms— Projection filtering, continuous-discrete
filtering, non-linear filtering, Bayesian state estimation.

1. INTRODUCTION

Filtering in stochastic differential equations (SDEs) [1] is an
important problem in signal processing [2, 3, 4] and finance
[5]. Most commonly, the SDE is measured in discrete time,
hence the model is given by:

dX(t) = µ(X(t), t) dt+ σ(X(t), t) dB(t), (1a)
Y (tn) | X(tn) ∼ f(y(tn) | X(tn)), (1b)

where µ is the drift function, σ is the diffusion coefficient,
B(t) is a vector of standard Brownian motions, and f(y(tn) |
X(tn)) is measurement model in form of the conditional prob-
ability density for Y (tn) | X(tn).

If we let Y (t) = {y(τn) : τn ≤ t}, then the filtering
problem is to compute the sequence of filtering densities
f(x(tn) | Y (tn)). When the system is linear and Gaussian,
the exact filter is given by the Kalman filter [6]. For non-linear
systems with Gaussian excitations, a classical approximation
method is the extended Kalman filter [7], which uses Taylor
series to linearise the system. It can be extended to numerical
integration approaches [8, 9, 10, 11, 12]. The filter update
in the aforementioned methods can be improved by iterative
linearisation techniques [13, 14]. However, this requires condi-
tional Gaussian models or specific conditions on the moments
of Y (tn) conditioned on X(tn) [15].
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Another line of work are the projection filters [16, 17],
where the Kushner–Stratonovich equation is projected onto a
parametric manifold of densities using differential geometric
method [18], smoothing is also possible [19]. However, these
require either continuous-time measurement or that the proba-
bility densities in the parametric manifold are conjugate prior
to the measurement in Equation (1).

The contribution of this paper is to extend the projection
filtering methodology to discrete-time measurements with ar-
bitrary likelihoods. This is done by constructing a smooth
map from prior to posterior, similar to tempering in Monte
Carlo methods [20], giving a differential equation character-
isation of the posterior. The methodology of [17] can then
be used to project the posterior onto a manifold of probabil-
ity densities. Emphasis is put on exponential families and in
particular Gaussian projections. The method is demonstrated
in a tracking example using `1 likelihoods and in a stochas-
tic volatility model, where it is shown to outperform other
common approaches.

1.1. Projections Onto A Parametric Probability Manifold

Our approach is based on differential geometric view on statis-
tics [18, 17], that we review briefly here. Let P be a set of
probability densities on X ⊂ Rd and consider a parametrised
subset of P , PΘ, θ ∈ Θ ⊂ Rm. Note that if p ∈ P then
p1/2 is square integrable, p1/2 ∈ L 2, and PΘ can thus be
identified as a sub-manifold of L 2 ⊃ L 2

Θ. For pθ ∈PΘ, the
tangent space at θ is given by {∂θip

1/2
θ }

p
i=1. Furthermore, if

v = 1
2p

1/2
θ u ∈ L 2, then its projection onto the tangent space

of L 2
Θ at θ is given by [17, Lemma 2.1]

Πθv =
1

2
Eθ
[
u∇Tθ log pθ

]
g−1(θ)(∇θ log pθ)p

1/2
θ , (2)

where g(θ) is the Fisher information matrix of pθ. Suppose
that a smooth curve p1/2

τ ∈ L 2, τ ∈ [0, 1] is given by

∂τp
1/2
τ = A (p1/2

τ ), p
1/2
0 = p

1/2
θ0
∈ L 2

Θ, (3)

where A is some operator. The projection of p1/2
τ onto L 2

Θ is
then defined as [17]

∂τ p̂
1/2
θ(τ) = Πθ(τ) ◦A (p̂

1/2
θ(τ)), p̂

1/2
θ(0) = p

1/2
θ0
, (4)
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where ◦ denotes operator composition.
It is worth noting that the projection approximation in this

form can only be used for continuous-time flows of probabil-
ity densities. For example, by setting A to be the operator
corresponding to the Fokker-Planck equation associated with
Equation (1a) we get an approximation to the prediction step
of continuous-discrete Bayesian filter [17]. The update is
problematic in this formulation, because it corresponds to a
instantaneous jump in the posterior distribution. For that rea-
son [16, 17] formulated the discrete-time updates only for
conjugate models. In this paper we present a more general
procedure to perform the updates in the projection formalism.

2. BAYESIAN PROJECTION UPDATE

In this section, we present the proposed projection filter and
its specialisation to Gaussian manifolds.

2.1. A Smooth Mapping From Prior To Posterior

As discussed above, the prediction step of a Bayesian filter
can be approximated by Equation (4) with A selected to be
the Fokker-Planck operator [17]. Hence, here we only need to
consider the update step of the Bayesian filter.

Let πθ0 ∈PΘ, θ0 ∈ Θ be a predictive density and f(y |
x) the likelihood. The filtering density is then given by:

π(x | y) =
f(y | x)πθ0(x)∫

X f(y | x)πθ0(x) dx
. (5)

The goal is to find an element θ1 ∈ Θ such that πθ1 approxi-
mates the exact posterior, Equation (5), well. In order to make
use of Equation (4), we introduce a smooth mapping from
prior to posterior:

pτ (x | y) : [0, 1]→P ⊇PΘ,

with p0(x | y) = πθ0(x) and p1(x | y) = π(x | y). An
obvious candidate is given by

pτ (x | y) =
[f(y | x)]τπθ0(x)∫

X [f(y | x)]τπθ0(x) dx
. (6)

Differentiating pτ with respect to τ gives

∂τpτ (x | y) = (`(x)− Eτ [`(X)])pτ (y | x),

where `(x) , log f(y | x) and Eτ is the expectation operator
associated with pτ . Or for the square root:

AX|Y (u) =
1

2
(`(x)− Eu2 [`(X)])u, u ∈ L 2, (7a)

∂τ p
1/2
τ (x | y) = AX|Y (p1/2

τ (x | y)), (7b)

where Eu2 is the expectation with respect to u2 ∈P .

2.2. Projecting The Posterior Onto A Manifold

Applying the projection operator, as defined in Equation (2),
to Equation (7b) gives:

Πθ(τ) ◦AX|Y (p̂
1/2
θ(τ))

=
1

2
Ê
[
`(X)∇T

θ log p̂θ(τ)

]
g−1(θ(τ))(∇θ log p̂θ(τ))p̂

1/2
θ(τ),

where Ê, Ĉ, and V̂ are expectation, cross-covariance, and
covariance operators with respect to p̂θ(τ), respectively. On
the other hand, we have

∂τ p̂
1/2
θ(τ)(x) =

1

2
p̂

1/2
θ(τ)[∂τθ(τ)]Tg(θ(τ))g−1(θ(τ))∇θ log p̂θ(τ).

Matching the expressions gives ∂τθ as

∂τθ(τ) = g−1(θ(τ))Ê
[
∇θ log p̂θ(τ)`(X)

]
. (8)

If p̂θ(τ) is in an exponential family of densities:

p̂θ(τ)(x) = exp(θT(τ)T (x)− κ(θ(τ)))h(x), (9)

then by standard results on exponential families [21],

∇θ log p̂θ(τ)(x) = T (x)−∇θκ(θ(τ)) (10a)

g(θ(τ)) = ∇2
θκ(θ(τ)). (10b)

Therefore, θ(τ) is given by

∂τθ(τ) = [∇2
θκ(θ(τ))]−1Ĉ[T (X), `(X)]. (11)

Note that if `(X) is a polynomial in T (X), then the right hand
side of Equation (11) can be expressed in terms of derivatives
of κ(θ(τ)) [21]. When `(X) is linear in T (X), exact posterior
inference is retrieved, this is Theorem 1.

Theorem 1. Let `(x) = ηT(y)T (x) + c, for some constant c
that doesn’t depend on x. Then the projection update Equa-
tion (11) gives the exact posterior for a prior in the exponential
family Equation (9).

Proof. Plugging in the log-likelihood into Equation (11) gives

∂τθ(τ) = [∇2
θκ(θ(τ))]−1Ĉ[T (X), ηT(y)T (X)]

= [∇2
θκ(θ(τ))]−1V̂[T (X)]η(y) = η(y),

(12)

where we used V̂[T (X)] = ∇2
θκ(θ(τ)) [21]. Therefore, solv-

ing Equation (12) gives

θ(1) = θ0 + η(y), (13)

which is the required result since Equation (9) is a conjugate
prior and Equation (13) is the posterior parameter [21].
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2.2.1. The Gaussian Manifold

A particularly interesting and useful example of an exponential
family is the Gaussian distributions:

p̂θ(τ)(x) = N (x;µ(τ),Σ(τ)). (14)

We use the parametrisation θT = [µT, (vec Σ)T]. The Fisher
matrix and score vector (∇θ log p̂θ(τ)) are then given by

g(θ) = blkdiag
[
Σ−1,

1

2
Σ−1 ⊗ Σ−1

]
,

∇θ log p̂θ(τ)(x) =

[
Σ−1(x− µ)

1
2 vec[Σ−1(x− µ)(x− µ)TΣ−1]

]

+

[
0

− 1
2 vec[Σ−1]

]
,

where ⊗ is Kronecker’s product. Straightforward calculations
then give

Πθ(τ) ◦AX|Y (p̂
1/2
θ(τ)) = Ĉ[`(X), (X − µ)]Σ−1(x− µ)

1

2
p̂

1/2
θ(τ)

+
1

2
(x− µ)TΣ−1Ĉ

[
(X − µ)(X − µ)T, `(X)

]
Σ−1(x− µ)

× 1

2
p̂

1/2
θ(τ) −

1

2
tr
[
Σ−1Ĉ

[
(X − µ)(X − µ)T, `(X)

]1

2
p̂

1/2
θ(τ).

On the other hand, differentiating the square root of Equa-
tion (14) gives

∂τ p̂
1/2
θ(τ)(x) =

(
[∂τµ]TΣ−1(x− µ)− 1

2
tr
[
Σ−1∂τΣ

])

× 1

2
p̂

1/2
θ(τ)(x) +

1

2
(x− µ)TΣ−1[∂τΣ]Σ−1(x− µ)

1

2
p̂

1/2
θ(τ)(x).

Matching terms gives:

∂τµ = Ê[(X − µ)`(X)], (16a)

∂τΣ = Ê[(X − µ)(X − µ)T(`(X)− E[`(X)])]. (16b)

Using Stein’s lemma [22], Equation (16) can be written as

∂τµ = ΣÊ[∇X`(X)], (17a)

∂τΣ = ΣÊ[∇2
X`(X)]Σ. (17b)

Another form of Equation (16) is given by [3, Exercise 5.3]:

∂τµ = Σ∇µÊ[`(X)], (18a)

∂τΣ = Σ∇2
µÊ[`(X)]Σ. (18b)

Which of the formulations Equations (16) to (18) is most
appropriate depends on the context. Equation (18) is conve-
nient when `(x) is non-differentiable, while Ê[`(X)] is both
tractable and differentiable in µ. This is the case, for exam-
ple, when `(X) is a Laplace log-likelihood. On the other

hand, Equation (17) can be used when derivatives of the log-
likelihood are easy and cheap to compute and can then be
paired with numerical integration [10] if their expectations
are intractable. In all other cases, Equation (16) together with
numerical integration might be preferable. Lastly, if `(X) is
quadratic in X we get exact updates, see Theorem 2.

Theorem 2. Let Y | X ∼ N (CX,R) then the Gaussian pro-
jection update Equations (16) to (18) give the exact posterior.

Proof. Note that∇X`(X) = CTR−1(y−CX) and∇2
X`(X) =

−CTR−1C and change parametrisation to information form
ξ = Σ−1µ and Λ = Σ−1. Then Equation (17) gives:

∂τξ = CTR−1y, (19a)

∂τΛ = CTR−1C. (19b)

Therefore we have

ξ(1) = ξ0 + CTR−1y, (20a)

Λ(1) = Λ0 + CTR−1C, (20b)

which is the information form of the Kalman update [23].

3. EXPERIMENTS

3.1. Linear `1−Filtering

Consider a Wiener velocity model:

dX(t) =

[
0 1
0 0

]
⊗ I2X(t) dt+

[
0
1

]
⊗ I2 dB(t), (21a)

Y (tn) = [0, I2]X(tn) +R1/2
n Vn. (21b)

The initial condition is Gaussian with mean E[X(0)] =
[0, 0, 10, 10]T and covariance V[X(0)] = I. We use a similar
simulation model as in [24], where Rn = R0 with probability
1 − α and Rn = 20R0 otherwise, Vn is standard Gaussian,
the system is measured at intervals δt = 0.1, and N = 1000
measurements per trajectory are simulated with M = 100
trajectories in total. Lastly, we set R0 = I2 and conduct two
experiments for α = 0.2 and α = 0.4, respectively.

For the projection update (PU) we takeRnVn to be Laplace
distributed, L(0, R0) and we compare to the method by [24]
(MM) and the standard Kalman filter (KF). PU uses 5 integra-
tion steps and MM uses 5 iterations. Furthermore, note that
the statistical linear regression methods [13, 14, 15] reduce to
the Kalman filter for this model.

The projection update is implemented as follows: The
expectation of the log-likelihood is just a sum of means of
folded Normal distributions [25], which can be differentiated
with respect to µ. Therefore, Equation (18) gives

∂τµ(τ) = Σ(τ)CTR
−1/2
0 w(τ), (22a)

∂τΣ(τ) = −Σ(τ)CTR
−1/2
0 W (τ)R

−1/2
0 CΣ(τ), (22b)
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(a) α = 0.2
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Fig. 1: Boxplots of the RMSES in the tracking experiments for KF (Purple),
MM [24] (Red), and PU (Blue).

where the entries of the vector w and the diagonal matrix W
are given by

wi(τ) =
√

2 Erf

(
eTi R

−1/2
0 (y(tn)− Cµ(τ))√

2[R
−1/2
0 CΣ(τ)CTR

−1/2
0 ]ii

)
, (23a)

Wii(τ) =
2√
π

exp
(
− [eTiR

−1/2
0 (y(tn)−Cµ(τ))]2

2[R
−1/2
0 CΣ(τ)CTR

−1/2
0 ]ii

)
[R
−1/2
0 CΣ(τ)CTR

−1/2
0 ]ii

, (23b)

where Erf is the error function and ei is a canonical basis
vector. The results are presented by boxplots of the root mean
square errors (RMSE) in Figure 1. As can be seen, MM is
better than KF, while PU is better than MM. As MM and PU
use the same modelling assumptions it is feasible that PU is
better at approximating the filtering distribution.

3.2. Stochastic Volatility

Consider the stochastic volatility model:

dX(t) = −λ(X(t)−m) dt+ σB(t), (24a)
Y (tn) = exp(X(tn)/2)Vn. (24b)

The initial condition is Gaussian with moments E[X(0)] =
V[X(0)] = 1 and σ = m = 1. The system is simulated with
a measurement interval of δt = 0.1 and N = 1000 measure-
ments per trajectory, with M = 100 trajectories simulated
in total. Lastly, we make two experiments for λ = 0.5 and
λ = 0.1, respectively.

The log-likelihood derivatives ∇X`(X) and ∇2
X`(X) are

easy to compute and have tractable expectations. Therefore,

0.55 0.6 0.65 0.7 0.75 0.8

PU

LA

KF

RMSE

(a) λ = 0.5

0.6 0.7 0.8 0.9

PU

LA

KF

RMSE

(b) λ = 0.1

Fig. 2: Boxplots of the RMSES in the stochastic volatility model for KF
(Purple), LA (Red), and PU (Blue).

Equation (17) gives the following projection update (PU):

∂τµ = Σ
1

2

(
y2 exp

(
− µ+

Σ

2

)
− 1
)
, (25a)

∂τΣ = −Σ2 1

2
y2 exp

(
− µ+

Σ

2

)
. (25b)

We compare this to Laplace approximation (LA), which also
uses∇X`(X) and∇2

X`(X). Furthermore, the measurement
in Equation (24) can be transformed according to:

log Y 2(tn) = X(tn) + log V 2
n , (26)

where E[log V 2
n ] = ψ(1)− log 2, V[log V 2

n ] = π2/2, and ψ is
the digamma function [26]. This enables the implementation
of a Kalman filter (KF), which we also compare to. Lastly, note
that the statistical linear regression methods are not applicable
here as the conditional mean is zero, (see [15]), and they reduce
to the Kalman filter for the transformation in Equation (26).

The results are presented by boxplots of the RMSES in
Figure 2. It can be seen that LA offers a moderate improvement
in performance over KF while PU in turn offers a significant
improvement in performance over LA. It can also be seen that
the RMSE for all filters go down for slower mean reversion
(λ = 0.1), while the difference in performance increases.

4. CONCLUSIONS

We have shown how differential geometric methods provide an
effective and versatile tool for approximating Bayesian filter
updates in systems with non-Gaussian likelihoods. The novelty
of this paper was to reformulate the update as a continuous
flow which can be approximated with projection methods. In
addition to providing the general algorithm, we also specialised
the algorithm to Gaussian manifolds. Our experimental results
show that the algorithm gives good results in comparison to
alternative approximation algorithms.
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