
GEOMETRIC INVARIANTS FOR SPARSE UNKNOWN VIEW TOMOGRAPHY

Mona Zehni, Shuai Huang, Ivan Dokmanić, Zhizhen Zhao
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ABSTRACT

In this paper, we study a 2D tomography problem for point source
models with random unknown view angles. Rather than recover-
ing the projection angles, we reconstruct the model through a set
of rotation-invariant features that are estimated from the projec-
tion data. For a point source model, we show that these features
reveal geometric information about the model such as the radial
and pairwise distances. This establishes a connection between
unknown view tomography and unassigned distance geometry prob-
lem (uDGP). We propose new methods to extract the distances and
approximate the pairwise distance distribution of the underlying
points. We then use the recovered distribution to estimate the lo-
cations of the points through constrained non-convex optimization.
Our simulation results show that our point source reconstruction
pipeline is robust to noise and outperforms the regularized expecta-
tion maximization (EM) baseline.

Index Terms— Point source model, rotation-invariant features,
2D tomography, unassigned distance geometry.

1. INTRODUCTION

We consider the following forward model,

s`[u] = D{Pθ`I}[u] + ε`[u], ` ∈ {1, 2, ..., L}

I(x, y) =

K∑
k=1

δ(x− xk, y − yk) (1)

where I is an unknown model consisting of point sources (i.e. Dirac
delta distributions) located at {(xk, yk)}Kk=1 ∈ R2, and D is the
discretization operator. For the sake of simplicity, we assume unit
weights for all the point sources. The operator Pθ is the 1D projec-
tion along direction θ, where θ is the angle between the projected
direction and the horizontal x axis. We assume that θ` is a sample
drawn from a uniform distribution over [0, 2π) which is a realistic
assumption in many scenarios. We introduce the sampling operator
D to take into account of the finite resolution of the digitized projec-
tion data,

D(f)[u] =
∫ (u+ 1

2 )∆

(u− 1
2 )∆

f(x)dx, for u ∈ {−M, . . . ,M}, (2)

where ∆ is the sampling step-size. The observed signals are con-
taminated by additive white Gaussian noise, i.e. ε`[u] ∼ N (0, σ2).
Fig. 1 illustrates the observation model.

Our goal is to recover the point source model from {s`}L`=1.
The problem of recovering a point-source signal arises in array sig-
nal processing [1], compressed sensing [2], super-resolution [3], ra-
dio astronomy [4, 5], unassigned distance geometry [6, 7], imaging
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molecules using X-ray crystallography [8], powder diffraction [9]
and cryo-electron microscopy (cryo-EM) atomic modeling [10], to
name a few.

The state of the art approaches in 2D tomography from known
projection angles mainly recover the underlying image by solving a
regularized least squares problem [11, 12]. The regularization then
imposes the structure of the image, for examples its smoothness or
sparsity. The main assumption of these methods is the availability
of the projection angles. On the other hand, 2D tomography from
unknown projection angles is addressed in [13, 14, 15] which aim at
recovering the projection angles from the projection data and then in-
vert the tomography operation to recover the image. However, these
methods do not incorporate the model of the underlying image, for
example, sparsity in our parametric image model.

In this paper we propose a pipeline that recovers a 2D point
source model directly from a set of projection lines taken at random
unknown angles. Our method consists of three steps, 1) construct-
ing rotation-invariant features from the projection data, 2) estimating
distances and distance distributions from the rotation-invariant fea-
tures, and 3) reconstruction of the point source model from the es-
timated distance distributions. Through the use of rotation-invariant
features, i.e. the unlabeled radial/pariwise distances distriubtions,
we avoid the estimation of the projection angles. Specifically, the
unlabeled radial distance distribution describes the distribution of
the distances from the point sources to the origin, i.e. the center of
mass. The unlabeled pairwise distance distribution, also known as
pair distribution function (PDF), describes the probability distribu-
tion of the pairwise distances between any two point sources. Fol-
lowing the same line as [16], we recover the point source model
from the estimated distance distributions by solving a constrained
nonconvex optimization problem. The proposed pipeline is robust
to noise if the number of samples are sufficiently large and provides
better reconstruction results compared to a regularized expectation
maximization (EM) benchmark.

2. METHOD

We start by elaborating upon the generation of the invariant features
from the projection data. Next, we describe two methods that target
estimating the distances and the distribution of the distances. Finally,
we describe the point source model reconstruction via the estimated
distance distributions.

2.1. Estimating the rotational invariant features

We estimate a set of rotational invariant features from the observa-
tions {s`}L`=1. These features are functions of certain geometric in-
formation of the point source model, namely, the radial distances
from the points to the origin and the pairwise distances between any
two points. We assume that the center of mass is at the origin and
all pairwise distances are smaller than R. All points lie within a
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Fig. 1. The 2D point source localization pipeline. Crosses indicate
point sources; triangles indicate Dirac deltas in 1D.

disk of radius R. Since the point source model I is the summation
of Dirac deltas, its projections from different angles also consist of
Dirac deltas,

(PθI)(r) =
K∑
k=1

δ(r − (yk cos θ − xk sin θ)). (3)

The observation is digitized into 2M + 1 bins and the discretization
operator D applied to (3) leads to,

gθ[u] = (DPθI) [u] =
K∑
k=1

1 yk cos θ−xk sin θ

∆
∈[u− 1

2
,u+ 1

2 ]
, (4)

where u ∈ {−M, . . . ,M} and ∆ = 2R
2M+1

. In order to derive the
rotation-invariant features from (4), we first take the discrete Fourier
transform (DFT) of a projection line at angle θ,

ĝθ[ν] =
K∑
k=1

exp
(
ı 2πν
(2M+1)

⌊
yk cos θ−xk sin θ

∆

⌉)
, (5)

where b·e denotes the nearest integer. For sufficiently small ∆, we
can approximate (5) without the rounding. Assuming the view an-
gles are uniformly distributed, the rotation-invariant features are de-
fined as:

µ[ν] = Eθ{ĝθ[ν]} ≈
K∑
k=1

J0

(
πrk
R
ν
)
, (6)

where J0(·) is the zeroth order Bessel function of the first kind.
The radial distance of the k-th point source is denoted by rk, i.e.,
rk =

√
x2
k + y2

k. Following the same procedure, we derive the
power spectral density as,

Eθ{|ĝθ[ν]|2} ≈
K∑
m=1

K∑
n=1

J0

(
πdm,n
R

ν
)

= KJ0(0) + 2
K∑
m=1

K∑
n=m+1

J0

(
πdm,n
R

ν
)
, (7)

where dm,n represents the distance between the m-th and n-th point
source, dm,n = dn,m =

√
(xn − xm)2 + (yn − ym)2.

Therefore, we define the second-order invariant feature as,

C[ν] =
(
Eθ{|ĝθ[ν]|2} −K

)
/2 . (8)

We estimate the features in (6) and (8) from the observations
{s`[u]}L`=1 as,

µ̂[ν] =
1

L

L∑̀
=1

ŝ`[ν], (9)

Ĉ[ν] =

(
1

L

L∑̀
=1

|ŝ`[ν]|2 − (2M + 1)σ2 −K
)
/2 , (10)

where ŝ`[ν] is an empirical realization of ĝθ[ν], and the subtraction
of (2M + 1)σ2 in (10) serves to debias the estimation of C. By the
law of large numbers, the sample estimates µ̂ and Ĉ converge to µ
and C when the sample size L → ∞. The features are invariant to
the global rotation of the point sources.

2.2. Recovering the geometry information of the model

We propose two methods to extract the geometric information of the
model from the invariant features.
• Prony-based distance estimation (PBDE): We make use of the

asymptotic behavior of the Bessel function [17, p.364],

J0(z) ≈
√

2

πz
cos
(
z − π

4

)
, (11)

for z � 1/4, to extract {rk}Kk=1 and {dm,n}Km,n=1 using Prony’s
method. Based on (11), for sufficiently large integer ν, the features
can be approximated by,

µ̂[ν] ≈
K∑
k=1

eı(akν−π/4)+e−ı(akν−π/4)
√

2πakν
, (12)

where ak = πrk
R

, for integer ν � d 1
4ak
e. We scale µ̂[ν] by

√
ν and

the new features
√
νµ̂[ν] are approximated by the sum of 2K com-

plex exponentials. Thus, we apply Prony’s method to determine the
filter that annihilates µ̂. Arguments of the complex zeros of this filter
correspond to the radial distances. We can use the same procedure
to recover the pairwise distances from Ĉ.
•Distance distribution estimator (DDE): Rather than recovering

the distances explicitly, we derive a distance distribution function
that is later used to recover the locations of the point sources. For
this purpose, we rely on the orthogonality properties of the Bessel
functions,

δ(u− v) = u

∫ ∞
0

tJ0(ut)J0(vt)dt, ∀v ∈ R . (13)

In order to implement (13), we replace the infinite upper limit of the
integral with a frequency cutoff c,∫ c

0

tJ0(ut)J0(vt)dt = c
uJ1(uc)J0(vc)− vJ0(uc)J1(vc)

u2 − v2
.

(14)

The integral (14) is evaluated using the Gauss-Legendre quadrature
rule [18, Chap. 4] and we perform Hankel transform on the features
µ and C,

fµ(uj) =

∫ c

0

µ(t)J0(ujt)tdt ≈
n∑
i=1

w(ti)tiµ̂(ti)J0(ujti),

fC(uj) =

∫ c

0

C(t)J0(ujt)tdt ≈
n∑
i=1

w(ti)tiĈ(ti)J0(ujti) ,

(15)
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with n points {ti}ni=1 on the interval [0, c] and the associated
weights w(ti). The Fourier coefficients at the non-equally spaced
quadrature points are evaluated from the projection lines using the
non-uniform FFT [19]. We define the approximated distributions of
the radial distances and the pairwise distances in (16) as,

pµ(uj) =
|fµ(uj)|2∑l
j=1 |fµ(uj)|2

, pC(uj) =
|fC(uj)|2∑l
j=1 |fC(uj)|2

, (16)

where l is the total number of equally spaced points on the real line.
We use pµ and pC to recover the point source model.

2.3. Point source recovery from distance distribution

After the radial and pairwise distance distributions are computed,
we can recover the locations of the point sources using the approach
proposed by [16]. The 2D domain space R2 is first divided into m
unit cells {ci}mi=1. The point source locations are then represented
by an indicator vector z ∈ {0, 1}m where each cell corresponds to
a possible point source location. Each entry zi of z corresponds to
a unit cell ci in the domain space R2; zi = 0 implies that no point
source occupies the ci cell, while zi = 1 marks the existence of a
point in the corresponding cell.

Based on this definition, the pairwise distance distribution Q(d)
can be written in closed-form with respect to z:

Q(d) =
1

m2
zTAdz , (17)

where Ad ∈ {0, 1}m×m is a symmetric Toeplitz matrix. Let dci,cj
denote the distance between the i-th cell ci and the j-th cell cj . The
(i, j)-th entry of Ad is determined by

Ad(i, j) =

{
1,
0,

if dci,cj = d
if dci,cj 6= d .

(18)

The pairwise distance distribution pC(d) is extracted from the pro-
jection lines using (16). Now the target is to find an indicator z such
that its corresponding pairwise distance distribution Q(d) matches
pC(d). For this purpose, as proposed in [16], we relax the integer
constraint on z and minimize the nonconvex cross entropy between
pC(d) and Q(d) subject to a set of convex constraints,

min
z

−
∑
d

pC(d) logQ(d)

subject to ‖z‖1 = n and zi ∈ [0, 1],∀i
Rz = r and Pz = s ,

(19)

where R is a matrix such that Rz = r enforces the radial distance
distribution pµ(d), represented by the probability vector r; while P
denotes the projection operator that relates the point source model z
to one of the observed projection lines s. The matrix R is derived
similarly as (18). We use the projected gradient descent method to
solve (19). The convergence behavior of the algorithm is discussed
in detail in [16].

3. NUMERICAL RESULTS

To test the algorithm performance, we generate the coordinates ofK
points randomly on [−1, 1] × [−1, 1]. To generate the features, we
take uniformly distributed L = 104 projections of the point source
model. We generate 100 random point source realizations. The in-
variant features are computed from (10), followed by (15) and (16)

Algorithm 1 Point source recovery from distance distribution

Input: Projection data, {s`[u]}L`=1

Output: The estimated {xk, yk}Kk=1

1: Estimate the distance distributions, pµ and pC , from {s`[u]}L`=1

using (10) and DDE.
2: Incorporate pµ and pC to formulate (19) and solve it using pro-

jected gradient descent.

Table 1. Success rate (%) of PBDE in recovering the radial distances

K = 5

SNR

M
∞ 100 10 1

100 95 88 80 53
500 99 90 76 50
1000 98 90 80 56
1500 98 89 77 52

K = 10

SNR

M
∞ 100 10 1

100 49 47 43 36
500 65 53 48 38
1000 72 55 49 38
1500 76 52 48 38

in order to get the transformed features and an estimation of the dis-
tance distribution. Also, we define signal to noise ratio (SNR) of
the projection data as the average power of the clean projection line
divided by σ2.

We use earth mover’s distance (EMD) [20] to quantify the per-
formance of our methods. EMD is a measure of the distance between
two probability distributions. We say a recovery is successful if the
EMD between the recovered distance distribution and the true one is
smaller than a threshold th = 0.1. Accordingly, we define success
rate as the portion of trials for which successful recovery is achieved,

success-rate = P{EMD(p, q) ≤ th} (20)

where p and q mark the true and the recovered distributions.

3.1. Discussion of the results

There are two ways to extract geometric features from the random
projections:
• Extracting the radial distances using PBDE: Table 1 present

the success rate in the recovery of radial distances for K = 5 and
K = 10 respectively for different values of SNR and M . In or-
der for (11) to be a good approximation, we choose ν ≥ 10. For
the Prony based method, M denotes the number of discretizations
of the projection lines. Thus, larger M means finer discretization
of the projection lines. The results suggest that as K increases, it
is harder to extract the radial distances due to denser distance distri-
butions. On the other hand, as long as the approximation in (11) is
accurate, changing M does not significantly affect the performance.

Table 2. Success rate (%) of the point source recovery from distance
distribution

K = 5 K = 10

SNR

M
∞ 100 10 1 0.5 ∞ 100 10 1 0.5

100 25 28 26 22 7 0 0 0 0 0
500 95 94 93 93 81 75 73 73 73 47
1000 97 96 96 94 80 80 81 82 75 49
1500 95 97 95 98 90 92 92 91 90 58
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Fig. 2. An illustration of the projection data (PD, the first row) for SNR = 1, the estimated distribution of the radial and pairwise distances
(16) (the second and third row), a comparison of the true and the recovered point source models (PSM, the last row). In the second and third
row, the blue and orange curves represent the true and estimated distance distribution (up to a scaling factor). In the last row, the blue circles
and red crosses mark the recovered and true point source models.

Furthermore, the higher the SNR, the higher the success rate. This
happens as a result of more accurate estimation of the features from
the projection data.
• The performance of the point source reconstruction: For this

experiment, the estimated features µ̂ and Ĉ are transformed by (15).
Then we use pµ and pC defined in (16) and solve the optimization
problem (19) using projected gradient descent to find the locations
of the points. Fig. 2 summarizes the observations, approximate dis-
tance distribution and the final results of our pipeline for a setting of
K = 5 and SNR = 1. Note that although the projection data (first
row) are severely contaminated by noise, the features (second and
third row) are estimated accurately and match features from the true
point source model very well (up to a scaling factor). In addition,
coarser discretization of the projection data (smaller M ) reduces the
accuracy in extracting the geometric invariants and localizing the
points (see the first column of Fig. 2).

Table 2 shows the success rates of the point sources recovery
from distance distributions. The results suggest that 1) it is criti-
cal to have a large M in order to have a good approximation of the
transformed features in (16), 2) our pipeline is robust to various noise
levels on the projection data, 3) with larger K the success rate de-
creases, because the minimum separation between points becomes
smaller.

As a benchmark, we formulated the 2D tomography as a maxi-
mum likelihood estimation problem and solved it using the regular-
ized EM algorithm with random initialization. For this baseline, we
cast the point source model as an image as in Fig. 3-(a). This image
represents a discretization of the support containing the point source
model. The pixel closest to each point source is set to one and the
rest of the pixel values are set to zero. The EM steps derived for our
problem are similar to [10, 21]. The M-step in the EM procedure was
implemented using GlobalBioIm library [22]. Figure 3 shows a suc-
cessful recovery (b) and a failed recovery (c) obtained from different
initializations. In fact for the point source configuration used in Fig.
2 and 3, the success-rate using the regularized EM approach is 20%

Fig. 3. (a) Ground truth image (the ground truth point source loca-
tions used in Fig. 2 cast as a 31×31 image, 2) a successful recovery
by EM, 3) failed recovery by EM. Note that (b) is recovered as a
rotated and blurred version of (a).

which is considerably smaller compared to that of our reconstruction
method reported in Table 2.

4. CONCLUSION

In this paper, we proposed a pipeline to recover a point source model
from a set of projections taken from unknown angles. This prob-
lem arises in 2D tomography with unknown projection angles, mo-
tivated by the reconstruction problem in Cryo-EM. Instead of first
recovering the angles and then solving a tomography problem, we
directly recover the locations of the point sources using a set of rota-
tional invariant features that are estimated from the projection data.
The features contain geometric information about the point source
model: the unlabeled radial/pairwise distances values extracted by
the Prony-based distance estimation method, and their distance dis-
tributions recovered by the distance distribution estimator method.
Finally, based on the recovered distance distributions, the locations
of the point sources are reconstructed. We show that the proposed
approach is robust to additive white Gaussian noise for various sim-
ulation set-ups and outperforms a regularized EM-based baseline.
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