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ABSTRACT

Wavelet analysis and perfect reconstruction filterbanks (PRFBs)
are closely related. Desired properties on the wavelet could be
translated to equivalent properties on a PRFB. We propose a new
learning-based approach towards designing compactly supported or-
thonormal wavelets with a specified number of vanishing moments.
We view PRFBs as a special class of convolutional autoencoders,
which places the problem of wavelet/PRFB design within a learning
framework. One could then deploy several state-of-the-art deep
learning tools to solve the design problem. The PRFBs are learned
by minimizing a squared-error loss function using gradient-descent
optimization. The model is trained using a dataset containing ran-
dom samples drawn from the standard normal distribution. We
demonstrate that imposing orthonormality and vanishing moment
constraints in the learning framework gives rise to filters that gen-
erate an orthonormal wavelet basis. We present results for learning
PRFBs with filter lengths 2 and 8. As an illustration, we show that
the proposed framework is able to learn the Daubechies wavelet
with four vanishing moments, as well as wavelets with an arbitrary
number of vanishing moments. For all our results, the signal-to-
reconstruction error ratio is greater than 200 dB, implying that
perfect reconstruction is indeed achieved accurately up to machine
precision.

Index Terms— Wavelet design, autoencoders, filterbank learn-
ing, multiresolution analysis, vanishing moments

1. INTRODUCTION

Multiresolution analysis (MRA) has been extensively used for fea-
ture extraction from signals such as electrocardiograms (ECG) [1],
electroencephalograms (EEG) [2] and images [3, 4]. The core idea
is to capture signal structures across multiple scales by considering a
dictionary that is composed of shifted and scaled versions of a single
generator function ψ(t):

D =

{
ψj,n(t) =

1√
2j
ψ

(
t− 2jn

2j

)}
(n,j)∈Z2

.

If the function ψ(t) ∈ L2(R) has a zero average and satisfies the
admissibility criterion given by Calderón [5], Grossman and Mor-
let [6], it qualifies as a wavelet for performing the continuous-time
wavelet transform. In a multiresolution analysis, wavelets enable a
representation of the details at various scales.

A wavelet is said to have p vanishing moments if the following
holds:

∫∞
−∞ t

kψ(t)dt = 0 for k = 0, 1, 2, . . . , p− 1. Wavelets hav-
ing p vanishing moments annihilate polynomials up to order p − 1

†: Both authors have contributed equally.

[7]. Thus, more the number of vanishing moments, sparser are the
representations of regular signals. The sparsifying property makes
wavelets useful in applications such as denoising and compression
[8–12].

A real-world application of wavelets involves choosing one
among many families of analytically derived wavelets based on
properties such as regularity, number of vanishing moments, com-
pact support, symmetry, and ease of implementation. Designing
wavelets with compact support is typically achieved by designing
a corresponding PRFB where the filters are constrained to satisfy
the desired properties of the wavelet [13]. We transform the design
problem to a learning problem so as to leverage state-of-the-art op-
timization tools and frameworks that have caused the deep learning
revolution [14].

Learning based frameworks have been employed to address the
problem of sparse representation of data. Pfister and Bresler relate
learning sparsifying transforms to designing multidimensional, mul-
tirate filterbanks [15, 16]. They propose using gradient descent to
learn the filters [16, 17]. The authors show applications of their
approach on image denoising and accelerated magnetic resonance
imaging. Using sparsity of the representation in wavelet bases and
wavelet frames as a criterion to learn wavelets has been considered
in [18] and [19], respectively. Recoskie and Mann represent the dis-
crete wavelet transform as an autoencoder, and construct a loss func-
tion to impose sparsity in the learnt representation [18]. A drawback
of their approach is that the learnt functions are not guaranteed to
satisfy the properties of a wavelet. Tai and E search for a wavelet
frame that perfectly reconstructs a given dataset while achieving a
maximally sparse representation [19].

1.1. This Paper

In the present work, we view a two-channel PRFB as an autoen-
coder. The design problem is indirectly solved by training the au-
toencoder in a data-driven fashion subject to perfect reconstruction
as the loss function. We also formulate the filterbank architecture
to incorporate additional constraints based on the conjugate mirror
filter property and vanishing moments property, which implicitly en-
forces sparsity in the associated representation. Since the perfect re-
construction property must be satisfied for any input sequence, the
network must see a wide spectrum of inputs. For this purpose, we
use random white Gaussian vectors as training data. The filters learnt
are not specific to the data – the data essentially performs the job of
a scaffolding to steer the optimization objective. Further, our ex-
periments show that the proposed method indeed learns bona fide
wavelets.

Getting to the specifics, we address the problem of learning or-
thonormal wavelet bases {ψn,j(t)}(n,j)∈Z2 , where ψ(t) has a com-
pact support [0, L − 1] and p ≤ bL

2
c vanishing moments. We em-
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Fig. 1. A two-channel filterbank.

ploy a convolutional neural network (CNN) based autoencoder with
the squared-error loss function. We propose a method to enforce
p vanishing moments on the learnt wavelets. We show that the pro-
posed learning framework is able to learn orthonormal wavelets such
as the Haar wavelet and more generally the Daubechies family of
wavelets accurately up to machine precision by imposing the con-
straint L = 2p. We also demonstrate that one could learn wavelets
with an arbitrary number of vanishing moments by allowingL ≥ 2p.

2. PERFECT RECONSTRUCTION FILTERBANKS

A two-channel multirate filterbank (Figure 1) splits an input signal
x[n] into two signals a[n] and d[n] having half the rate as x[n]. The
analysis filters are denoted by h[n] = h̄[−n] and g[n] = ḡ[−n],
respectively, and h̃[n] and g̃[n] denote the synthesis filters. Vetterli
[20] gave the following conditions on the four filters h, h̃, g and g̃
to reconstruct x[n] exactly from a[n] and d[n]:

ĥ∗(ej(ω+π))
ˆ̃
h(ejω) + ĝ∗(ej(ω+π))ˆ̃g(ejω) = 0, (1)

ĥ∗(ejω)
ˆ̃
h(ejω) + ĝ∗(ejω)ˆ̃g(ejω) = 2, (2)

where ĥ(ejω) is the discrete-time Fourier transform (DTFT) of h[n].
A collection of filters satisfying the above conditions is said to form
a PRFB. For the case where the four filters have finite impulse re-
sponse (FIR) with lengthL, the design problem reduces to solving an
underdetermined system of linear equations. A common approach to
deriving PRFBs analytically is to impose additional criteria to arrive
at a unique solution. The following criteria are imposed on the filters
to reduce the number of free variables to L:

h̃[n] = h[n], g̃[n] = g[n] and

g[n] = (−1)1−nh[(2l + 1)− n], where l ∈ Z. (3)

The filter h is then designed to satisfy (2), and is referred to as a
conjugate mirror filter (CMF). Mallat [13] showed that, under cer-
tain conditions, such filterbanks are capable of performing MRA,
the scaling (φ) and wavelet (ψ) functions of which are related to the
filters h and g as

φ̂(ω) =

∞∏
p=1

ĥ
(
ej2

−pω
)

√
2

; ψ̂(ω) =
1√
2
ĝ
(ω

2

)
φ̂
(ω

2

)
. (4)

Lemarié showed that every compactly supported wavelet cor-
responds to an MRA [21]. Conversely, for a PRFB to generate a
wavelet using (4), it can be verified that ĝ(0) := ĝ(ejω)|ω=0 = 0

must be satisfied, implying ĥ(π) := ĥ(ejω)|ω=π = 0. Thus, the
filter h[n] must necessarily be lowpass.

If we further impose that ψ(t) has p vanishing moments, h[n]
must have p roots at ω = π [22]. Daubechies [23] proved that a
real filter h[n] having p vanishing moments must have a minimum
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Fig. 2. The autoencoder architecture of a PRFB employed in this
work.
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Fig. 3. Illustration of vanishing moments constraint on filter h. It is
accomplished by imposing p roots at ω = π.

support of 2p, giving rise to the so-called ‘dbp’ family of wavelets
having a support 2p. Thus, it is possible to learn an orthonormal
wavelet ψ(t) having p vanishing moments by learning a filterbank
with filter length L ≥ 2p by constraining the filter h to have p roots
at ω = π.

In the subsequent sections, we make use of the properties of the
PRFB discussed so far in a learning framework.

3. VIEWING PRFBS AS CONVOLUTIONAL
AUTOENCODERS

An autoencoder is a special type of a neural network that is trained
to reproduce the given input at the output with a minimum distor-
tion [24]. It is often used for learning lower-dimensional latent rep-
resentations of the input data. In the case of a convolutional autoen-
coder [25], the convolutional layers are used for feature extraction
followed by max-pool layers for subsampling.

A PRFB is essentially a convolutional autoencoder with the
max-pool layers replaced by downsampling units. Max-pooling
and downsampling are comparable in the objective they achieve
– that of dimensionality reduction, but max-pooling is nonlinear
whereas downsampling is a linear operation. Both are periodically
shift-invariant. Owing to its linearity, the downsampling operation
is easier to analyze than the max-pooling operation.

Our autoencoder shown in Fig. 2 has two parallel branches, each
having separate layers performing convolution, downsampling, and
upsampling operations. The same input is fed to both the branches,
and the sum of their individual outputs is the final output.

The model is trained on a dataset X = {xi ∈ Rm}1≤i≤N ,
where xis are independently drawn from the standard normal dis-
tribution. The data used for training needs to be generic enough to
ensure perfect reconstruction for arbitrary signals from `2(Z). If the
training data lies within a specific frequency band that is a subset of
[0, 2π], the learnt filters are likely to be frequency-selective and spe-
cific to that band, thus not generalizing well. Training is performed
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Fig. 4. Learning a PRFB with L = 8 and without imposing or-
thonormality or vanishing moments constraints. None of the filters
learnt have frequency response that is zero at ω = 0.

by minimizing the squared-error loss function:

L(X;h, h̃, g, g̃) =
1

N

N∑
i=1

‖xi − x̃i‖22, (5)

resulting in the optimization problem

h∗, h̃∗, g∗, g̃∗ = arg min
h,h̃,g,g̃

L(X;h, h̃, g, g̃). (6)

This formulation is unconstrained, and requires learning a total
of 4L parameters, corresponding to the four filters. However, one
could also consider the constrained counterpart by imposing addi-
tional properties such as the CMF conditions (3), which requires L
parameters to be learnt. We refer to imposing CMF conditions as the
orthonormality constrained formulation.

Vanishing moments constraint: The vanishing moments of an
orthonormal wavelet are tightly coupled to the zeros of the CMF h
at ω = π (Theorem 7.4 of [22]) and the polynomials reproduced
by the corresponding scaling function (Strang-Fix conditions, [7]).
To enforce a desired number of vanishing moments, we introduce p
roots at ω = π for h. This is accomplished by representing h as a
cascade of two filters q and ` as shown in Figure 3. The first filter q
has the frequency response q̂(ejω) = (1 + e−jω)p, and a support of
p + 1. The filter `[n] is constrained to have a length of L − p, and
is trained while q[n] is kept fixed. With the constraint of p vanishing
moments, the problem reduces to one of learning L − p parameters
instead of L.

In this paper, we consider the filters to be real-valued. How-
ever, one could also learn complex filters, but this would increase
the search space dimension by a factor of 2.

4. IMPLEMENTATION

We implemented the PRFB learning using the TensorFlow Python
library [26], which implements automatic differentiation to train the
autoencoder, and is very convenient. We discuss the details regard-
ing training, initialization, dataset, and performance metrics used in
the proposed framework in this section.

4.1. Dataset and Initialization

We set the length m of each training signal xi to 128 and use N =
50 signals for training. Our experiments showed that even a small

Fig. 5. Learning a PRFB with L = 2 and orthonormality constraints
imposed.

(a) (b)

Fig. 6. Training loss plotted against epochs (a) corresponding to
Figure 4; (b) corresponding to Figure 5.

dataset is adequate for learning a PRFB. The filter parameters were
initialized as random samples drawn from a uniform distribution.
It has been observed experimentally that initializing over a smaller
support of the uniform distribution led to a faster convergence. We
found that a range of [−5, 5] was appropriate.

4.2. Training

For training, we employ the gradient-descent-based Adam optimiza-
tion algorithm [27]. The entire dataset X was used to compute the
gradients at each iteration. The learning rate of the optimizer was
tuned separately for each experiment to ensure convergence. We be-
gan with a high learning rate for each model, and reduced it when-
ever we observed large fluctuations in the training loss.

Training was continued until one of the following convergence
criteria was satisfied: (i) the training loss going below a predefined
threshold (10−28 in our case); or (ii) no change in the training loss
for more than 100 iterations.

4.3. Performance Metric

We evaluate whether the filters learnt indeed form a PRFB in two
ways. First, we compute the signal-to-reconstruction error ratio

(SRER) defined as SRER = 20 log10

(
1
N

N∑
i=1

‖xi‖2
‖xi−x̃i‖2

)
dB. A

test set of white Gaussian noise signalsXtest =
{
xi ∈ R1000

}
1≤i≤N

with N = 100 is used to compute the SRER. Observe that the di-
mensions of the training and test signals are different. This has been
chosen so as to validate the perfect reconstruction property of the
learnt filterbanks over the entire space of interest, `2(Z) . Second,
we numerically test whether the learnt filters satisfy the perfect
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Fig. 7. Learning db4: Learnt PRFB filter responses with length L =
8, and p = 4 vanishing moments imposed.

Fig. 8. [Colour online] The scaling and wavelet functions gener-
ated from the filters shown in Figure 7. The known db4 scaling and
wavelet functions are superimposed.

reconstruction conditions (1) and (2) over a grid of frequencies in
[0, 2π].

For all the learnt filters reported in this paper, the SRER values
turned out to be greater than 200 dB, and conditions (1) and (2) were
satisfied with an accuracy up to machine precision (errors were of the
order of 10−18), implying that the proposed method is indeed able
to learn PRFBs.

5. NUMERICAL RESULTS

5.1. Learning PRFBs

We first demonstrate learning PRFBs using the unconstrained as well
as orthonormality constrained versions of our framework.

For the unconstrained case, we present the learnt filter responses
for an L = 8 PRFB in Figure 4. We observe that the filters do not
have the standard lowpass-highpass structure, which traditional fil-
terbanks possess. None of the filters’ frequency responses are zero
at ω = 0, implying that these do not generate true wavelet func-
tions. This is an example of a PRFB that does not correspond to an
MRA. Figure 6(a) shows the training loss as a function of epochs
while learning the filterbank. We observe that though the training
loss fluctuated several times, it did finally converge to a valid solu-
tion.

Next, we present results of a PRFB with the orthonormality con-
straint for filter length L = 2. The learnt filters and their frequency
responses are presented in Figure 5. The training for this case com-
pleted within 500 epochs (cf. Figure 6(b)). It can be verified that for
the length-two case, CMFs have an impulse response of the form
[cos θ, sin θ]. The learnt filter has this form with θ = 255.26°,
thus agreeing well with the theory. In general, setting orthonor-
mality constraints is not sufficient to guarantee that the learnt fil-
ters will generate a wavelet; we must additionally impose one root
at ω = π. For the L = 2 case, the Haar filterbank with impulse
response [ 1√

2
, 1√

2
] is the only possible CMF having a single root at

ω = π, corresponding to θ = 45°.

Fig. 9. Learning a wavelet with an arbitrary number of vanishing
moments: Filters learnt with L = 8 and p = 1 vanishing moment.

Fig. 10. Learning a wavelet with an arbitrary number of vanishing
moments: scaling and wavelet functions obtained from learnt filters.

5.2. Learning wavelets with p vanishing moments

We next impose the vanishing moment constraint on the PRFB
model. For filters of length L = 8, imposing p = 4 vanishing
moments corresponds to the db4 wavelet. The frequency responses
of the learnt filters are shown in Figure 7. The scaling and wavelet
functions generated from the learnt filters are plotted in Figure 8.
We also plot the db4 scaling and wavelet functions to facilitate com-
parison. The learnt scaling and wavelet functions match closely with
the known db4 functions.

We conclude this section by showing that the proposed frame-
work can learn wavelets with an arbitrary number of vanishing mo-
ments. We set L = 8 and p = 1. The learnt filters are presented in
Figure 9. Imposing one vanishing moment ensures that an orthonor-
mal wavelet basis is learnt, which can be verified by checking that
ĝ(0) = 0. The learnt scaling and wavelet functions are shown in
Figure 10. It is seen that the learnt wavelet is not smooth, which can
be explained by Tchamitchian’s theorem [28] (Chapter 7 in [22]).
Tchamitchian established a relation between the Lipschitz regular-
ity of the scaling and wavelet functions and the number of vanishing
moments. To learn wavelets with a higher regularity, one can impose
more vanishing moments and set the length accordingly.

6. CONCLUSIONS

We presented a learning based approach to arrive at wavelets with or-
thogonality and p vanishing moments criteria imposed on them. We
showed that an autoencoder architecture having a structure similar to
a two channel filterbank is able to learn filters satisfying the perfect
reconstruction criteria. We described a method to impose p vanish-
ing moments on wavelets by constraining the learnt filters to have p
roots at ω = π. We used this method to arrive at the well known db4
wavelet and showed that it is possible to learn an arbitrary wavelet
having a single vanishing moment. Further, it is possible to impose
additional criteria on the loss functions to learn wavelets adapted for
special applications, a problem that requires more investigation.
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