
ON THE FOURIER REPRESENTATION OF COMPUTABLE CONTINUOUS SIGNALS

Holger Boche and Ullrich J. Mönich

Technische Universität München
Lehrstuhl für Theoretische Informationstechnik

ABSTRACT
In this paper we study whether it is possible to decide algorithmically
if the Fourier series of a continuous function converges uniformly.
We show that this decision cannot be made algorithmically, because
there exists no Turing machine that can decide for each and every
continuous functions whether its Fourier series converges uniformly.
Turing computability describes the theoretical feasible that can be
implemented on a digital computer, hence the result shows that there
exists no algorithm that can perform this decision.

Index Terms— Turing computability, uniform convergence,
Fourier series, continuous function

1. INTRODUCTION

In many signal processing applications the approximation of com-
plicated functions by a small number of simple functions plays an
important role [1–6]. There are numerous possibilities for the ap-
proximation processes, and many of them have proven to be use-
ful, e.g., spline approximations [2], approximations for bandlimited
signals using the Shannon sampling series [3], approximations with
sparse signals [5] or wavelets [7–10], and Fourier series approxima-
tions [11]. Many of these approaches use orthonormal or biorthog-
onal systems [12]. Depending on the application, different signal
representations have been proposed with properties that are tailored
to the specific problem at hand [13, 14].

In this paper we consider the approximation of continuous pe-
riodic functions by Fourier series. Fourier series are widely used
in signal theory, e.g., in the design of FIR filters [15]. In order to
apply them practically, it is important to know their approximation
behavior. The Fourier series of a 2π-periodic function f is given by

∞∑
k=−∞

ck(f) e
ikt, t ∈ [−π, π), (1)

where
ck(f) =

1

2π

∫ π

−π
f(t) e−ikt dt, k ∈ Z, (2)

are the Fourier coefficients. For continuously differentiable func-
tions, the Fourier series (1) is known to converge for all t ∈ [−π, π).
Further, for absolutely continuous functions the Fourier series (1)
even converges uniformly. For many practical applications these
simple sufficient conditions for convergence are either not satisfied
or difficult to verify. Moreover, in the mathematical literature it is
well-known that there exist continuous functions such that (1) di-
verges at some point t ∈ [−π, π) [16, p. 72].

H. Boche was supported by the German Ministry of Education and Re-
search (BMBF) within the national initiative for molecular communication
under Grant 16KIS0914 and U. Mönich by the German Research Foundation
(DFG) under grant BO 1734/20-1.

From an application’s point of view it would be very helpful to
have some criterion based on which it is possible to decide whether,
for a given continuous function, the Fourier series (1) converges uni-
formly or not. In this paper we study if this question can be answered
algorithmically, i.e., if we can find an algorithm that takes any com-
putable continuous functions as an input and decides whether the
Fourier series of this function converges uniformly. The existence of
such an algorithm would be of importance for the computer-based
signal and system design. Note that we restrict the class of contin-
uous functions by requiring that they are computable, i.e., that they
can be described algorithmically.

The proper framework to study this question is Turing com-
putability. A Turing machine is an abstract device that manipulates
symbols on a strip of tape according to certain rules [17–20]. Al-
though the concept is very simple, a Turing machine is capable of
simulating any given algorithm. Turing machines have no limita-
tions with respect to memory or computing time, and hence provide
a theoretical model that describes the fundamental limits of any prac-
tically realizable digital computer.

We will show that there exists no Turing machine, and hence
no algorithm, that always can decide whether the Fourier series of a
continuous computable function converges uniformly.

2. COMPUTABILITY

Before we present our main result, we review some basics of com-
putability theory. Alan Turing introduced the concept of a com-
putable real number in [17, 18]. A sequence of rational numbers
{rn}n∈N is called computable sequence if there exist recursive func-
tions a, b, s from N to N such that b(n) 6= 0 for all n ∈ N and

rn = (−1)s(n) a(n)
b(n)

, n ∈ N.

A recursive function is a function, mapping natural numbers into nat-
ural numbers, that is built of simple computable functions and recur-
sions [21]. Recursive functions are computable by a Turing machine.
A real number x is said to be computable if there exists a computable
sequence of rational numbers {rn}n∈N such that |x − rn| < 2−n

for all n ∈ N. By Rc we denote the set of computable real numbers.
Rc is a field, i.e., finite sums, differences, products, and quotients of
computable numbers are computable. A non-computable real num-
ber was for example constructed in [22].

There are several ways to define computability of functions,
most importantly Turing/Borel computability, Markov computabil-
ity, and Banach–Mazur computability. Out of these three, Banach–
Mazur computability is the weakest form of computability, because
any function that is computable with respect to the two other def-
initions is always Banach–Mazur computable. Conversely, any
function that is not Banach–Mazur computable cannot be Turing

5013978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019

computable. A function f : Rc → Rc is called Banach–Mazur com-
putable if f maps any given computable sequence {xn}n∈N of real
numbers into a computable sequence {f(xn)}n∈N of real numbers.
We will further use the important fact that every computable real
function is continuous on Rc [23]. For a more detailed treatment of
computability, see for example [19, 20, 23, 24], and for an example
of a non-computable function [25].

By C(T) we denote the space of all continuous 2π-periodic
functions, equipped with the norm ‖f‖C(T) = maxt∈[−π,π)|f(t)|.
A function f ∈ C(T) is computable in C(T) if there exists a com-
putable sequence {gn}n∈N of trigonometric polynomials such that
‖f − gn‖C(T) < 2−n for all n ∈ N. Let Cc(T) denote the set
of all computable functions in C(T). Note that Cc(T) has a linear
structure.

3. MAIN RESULT

Before we state our main result, we introduce several abbreviations.
Let

(SNf)(t) =

N∑
k=−N

ck(f) e
ikt, t ∈ [−π, π),

denote the N -th partial sum of the Fourier series, where the Fourier
coefficients ck(f) are given by (2). There exist functions f ∈ C(T)
for which the Fourier series of f converges uniformly, i.e., we have

lim
N→∞

‖f − SNf‖C(T) = 0. (3)

But there exist also functions f ∈ C(T) for which the Fourier series
of f does not converge uniformly to f , i.e., we have

lim sup
N→∞

‖f − SNf‖C(T) > 0. (4)

It can be shown that the set of functions f ∈ C(T) that satisfy (4)
is large, where the “size” can be characterized by different measures
[26]. Let

Uc(T) =
{
f ∈ Cc(T) : lim

N→∞
‖f − SNf‖C(T) = 0

}
denote the set of all functions f ∈ Cc(T) for which the Fourier series
converges uniformly.

Remark 1. There exist infinitely many functions in Uc(T). For ex-
ample, all trigonometric polynomials with rational coefficients are
in Uc(T).

Clearly, it would be helpful to have an algorithm that can de-
cide whether for a given f ∈ C(T), we have (3) or (4). In order
to be in a meaningful setting, we need to restrict ourselves to com-
putable continuous functions f ∈ Cc(T), i.e., functions that can be
described algorithmically. Note that, for f ∈ Cc(T), the Fourier co-
efficients defined by (2) and consequently the partial sums SNf are
computable [24, Th. 5, p. 35]. Although, for f ∈ Cc(T), we have
this computable sequence of very simple functions {SNf}N∈N, we
cannot always approximate f with this sequence, because there exist
computable functions Cc(T) for which the Fourier series diverges.
This will be shown in Lemma 1.

We ask whether it is possible to characterize the set Uc(T) algo-
rithmically. That is, we ask if there exists an algorithmic condition,
which is necessary and sufficient for f ∈ Cc(T) to be in Uc(T). The
following theorem answers this question in the negative.

Theorem 1. There exists no Turing machine that can decide for all
f ∈ Cc(T) whether f ∈ Uc(T).

Theorem 1 shows that any algorithm that is forced to give a de-
cision after a finite amount of time, needs to give wrong answers for
some functions.

Before we present the proof of Theorem 1, we need to fur-
ther formalize the problem and phrase it in the terminology of com-
putability. Let

M : Cc(T)→ {“yes”, “no”}
denote the mapping that characterizes whether f ∈ Uc(T), i.e., the
mapping that satisfies

Mf = “yes” ⇔ f ∈ Uc(T).

We will study the weakest form of computability here, namely
Banach–Mazur computability. To this end, we encode “yes” with 1
and “no” with 0. Moreover, every computable function f ∈ Cc(T) is
described by an algorithm Pf . The question now is: Does there exist
a Turing machine TM with TM(Pf) = 1 if and only if f ∈ Uc(T)?
For simplicity, we do not distinguish between a computable function
f and the algorithm Pf describing it in the following.

For the proof of our main result, we need two lemmas.

Lemma 1. We can construct a computable function f∗ ∈ Cc(T)
such that

lim sup
N→∞

‖SNf∗‖C(T) =∞. (5)

We postpone the proof of Lemma 1 until the end of this section.

Remark 2. We actually show more than what is stated in Lemma 1.
We construct a set of linearly independent computable functions
{gl}l∈N ⊂ Cc(T) and, for each l ∈ N, two Turing computable
functions Nl : N→ N and Ul : N→ Rc with limk→∞Nl(k) =∞
and limk→∞ Ul(k) = ∞, such that for the computable numbers
‖SNl(k)gl‖C(T) we have ‖SNl(k)gl‖C(T) > Ul(k). In other words,
the divergence behavior is computable.

For functions f ∈ Cc(T) \ Uc(T) we have

lim sup
N→∞

‖f − SNf‖C(T) > 0,

however, (5) does not necessarily hold. Hence, we introduce the set

Dc(T) =
{
f ∈ Cc(T) : lim sup

N→∞
‖SNf‖C(T) =∞

}
,

i.e., the set of all functions f ∈ Cc(T) for which (5) holds. For our
second lemma, we need to introduce several functions. Let f∗ ∈
Cc(T) be the function from Lemma 1, g ∈ Uc(T), and λ1, λ2 ∈
Rc ∩ [0, 1] with λ1 6= λ2. Further, let f1 = (1 − λ1)g + λ1f∗
and f2 = (1 − λ2)g − λ2f∗. For µ ∈ Rc ∩ [0, 1] we consider
the computable function Fµ = (1 − µ)f1 + µf2 and set ψ(µ) =
χUc(T)(Fµ).

Lemma 2. For all λ1, λ2 ∈ Rc ∩ [0, 1], λ1 6= λ2, the function ψ is
not Banach–Mazur computable.

Proof. Let λ1, λ2 ∈ Rc ∩ [0, 1], λ1 6= λ2 be arbitrary but fixed. For
µ ∈ Rc ∩ [0, 1] we have

Fµ(t) = [(1− µ)(1− λ1) + µ(1− λ2)]g(t)

+ [(1− µ)λ1 − µλ2]f∗(t).

For µ̂ = λ1/(λ1 + λ2) we have

Fµ̂(t) = [(1− µ̂)(1− λ1) + µ̂(1− λ2)]g(t).

5014

Since g ∈ Uc(T), it follows that that Fµ̂ ∈ Uc(T). For all other µ,
i.e., µ ∈ Rc ∩ [0, 1] \ {µ̂}, we have Fµ ∈ Dc(T) ⊂ Cc(T) \ Uc(T),
because f∗ ∈ Dc(T). Thus, we see that

ψ(µ) =

{
1, µ = µ̂,

0, µ ∈ Rc ∩ [0, 1] \ {µ̂}.

It follows that for every computable sequence {µn}n∈Z of real num-
bers with limn→∞ µn = µ̂ and µn 6= µ̂, n ∈ N, we have

0 = lim
n→∞

ψ(µn) < ψ(µ̂) = 1,

i.e., ψ is a discontinuous function on Rc ∩ [0, 1]. This implies that
ψ is not Banach–Mazur computable, because every Banach–Mazur
computable function is necessarily continuous [23].

Now we are in the position to prove Theorem 1.

Proof of Theorem 1. We prove the assertion by contradiction. As-
sume that there exists a Turing machine that for all f ∈ Cc(T)
can decide whether f ∈ Uc(T). This means we can construct
a Turing machine TM1 : Cc(T) → {0, 1} with TM1(f) =
1 if and only if f ∈ Uc(T). For µ ∈ Rc ∩ [0, 1] we have
ψ(µ) = χUc(T)(Fµ) = TM1(Fµ). Further, since Fµ is computable
there exists a Turing machine TM2 : Rc ∩ [0, 1] → Cc(T) with
TM2(µ) = Fµ. It follows that the concatenation of both Turing
machines gives a Turing machine TM3 : Rc ∩ [0, 1] → {0, 1} with
TM3(µ) = TM1(TM2(µ)) = TM1(Fµ) = ψ(µ). Let {λn}n∈N
be a computable sequence of real numbers. Then {qn}n∈N with
qn = TM3(λn) = ψ(λn), n ∈ N, is a computable sequence.
Hence, ψ maps the computable sequence {λn}n∈N into the com-
putable sequence {ψ(λn)}n∈N, or, in other words, ψ is Banach–
Mazur computable. This is a contradiction, because in Lemma 1 we
have already shown that ψ is not Banach–Mazur computable.

Next we give a sketch of the remaining proof of Lemma 1.

Sketch of the proof of Lemma 1. For N ∈ N, let

pN (t) =

N∑
k=1

1

k
sin(kt), t ∈ [−π, π).

We have pN ∈ Cc(T), and it can be shown that

‖pN‖C(T) < π (6)

for all N ∈ N. For M,N ∈ N let

qM,N (t) = eiMt pN (t) = eiMt
N∑
k=1

1

k
sin(kt)

= −eiMt

2i

(
N∑
k=1

1

k
e−ikt−

N∑
k=1

1

k
eikt
)
.

Then, a short calculation shows that, for M ≥ N ,

(SMqM,N)(t) = − 1

2i

N∑
k=1

1

k
e−ikt eiMt .

Hence, it follows that

|(SMqM,N)(0)| = 1

2

N∑
k=1

1

k
>

1

2

N∑
k=1

∫ k+1

k

1

τ
dτ

=
1

2

∫ N+1

1

1

τ
dτ =

1

2
log(N + 1). (7)

For l ∈ N, let Nl = 2(l
3). We set M1 = 2(1

3) = 2, M2 =
2M1 +N2, and, for general k ∈ N,

Mk+1 = 2Mk +Nk+1 = 2Mk + 2((k+1)3).

Having this specific construction rule, the sequences {Nl}l∈N and
{Mk}k∈N are Turing computable. Let

f∗(t) =

∞∑
l=1

1

l2
qMl,Nl(t), t ∈ [−π, π). (8)

We have

‖f∗‖C(T) ≤
∞∑
l=1

1

l2
‖pNl‖C(T) < π

∞∑
l=1

1

l2
=
π3

6
,

where the last inequality follows from (6). This shows that f∗ ∈
C(T). Further, using a similar calculation, we obtain, for K ∈ N,∥∥∥∥∥f∗ −

K∑
l=1

1

l2
qMl,Nl

∥∥∥∥∥
C(T)

=

∥∥∥∥∥
∞∑

l=K+1

1

l2
qMl,Nl

∥∥∥∥∥
C(T)

< π

∞∑
l=K+1

1

l2
< π

∞∑
l=K+1

∫ l

l−1

1

τ2
dτ = π

∫ ∞
K

1

τ2
dτ =

π

K
.

Thus, we see that the sequence of trigonometric polynomials
{
∑K
l=1

1
l2
qMl,Nl}

∞
K=1 is a computable sequence that convergences

to f∗, effectively in K. Hence, we have f∗ ∈ Cc(T). For k ∈ N, we
have

(SMkf∗)(t) =

k−1∑
l=1

1

l2
qMl,Nl(t) +

1

k2
(SMkqMk,Nk)(t).

It follows that∣∣∣∣(SMkf∗)(t)−
1

k2
(SMkqMk,Nk)(t)

∣∣∣∣ ≤
∥∥∥∥∥
k−1∑
l=1

1

l2
qMl,Nl

∥∥∥∥∥
C(T)

< π

∞∑
l=1

1

l2
=
π3

6
,

and consequently that

|(SMkf∗)(0)| ≥
1

k2
|(SMkqMk,Nk)(0)| −

π3

6

>
1

2k2
log(Nk + 1)− π3

6
>

1

2k2
log(2(k

3))− π3

6

=
k

2
log(2)− π3

6

for all k ∈ N, where we used (7) in the second line. This inequal-
ity shows that lim supN→∞‖SNf∗‖C(T) = ∞. At this point we
already have proved the assertion of Lemma 1.

Next we prove the additional statement made in Remark 2. Ac-
cording to the construction of f∗ we have

1

2π

∫ π

−π
f∗(t) e

−int dt = 0

for all n ≤ −1. Hence, for l ≥ 0 the functions gl(t) = eilt f∗(t),
t ∈ [−π, π), are linearly independent. Since f∗ is computable, it
follows that gl ∈ Cc(T), l ≥ 0. Further,

Nl(k) = l +Mk, k ∈ N,

5015

gives the Turing computable functions Nl : N→ N, and

Ul(k) =
k

2
log(2)− π3

6
, k ∈ N,

the Turing computable functions Ul : N → Rc, the existence of
which we claimed in Remark 2.

4. DISCUSSION

In Section 3 we have seen that there exists no Turing machine that for
all f ∈ Cc(T) can decide whether f ∈ Uc(T). Next, we want to ask
if maybe a weaker Turing machine exists: Does there exist a Turing
machine TMsU that stops exactly when f ∈ Uc(T)? Having such
a Turing machine would not solve our original problem, because
if TMsU has not stopped after a certain number of steps, it could
be that TMsU simply did not yet “detect” that f ∈ Uc(T) or that
f ∈ Cc(T) \ Uc(T). We could also ask the analogous question for
the set Cc(T) \ Uc(T): Does there exist a Turing machine TsV that
stops exactly when Cc(T) \ Uc(T)?

For convenience we introduce the set Vc(T) = Cc(T) \ Uc(T),
consisting of all computable continuous functions for which the
Fourier series is not uniformly convergent. Since∣∣‖SNf‖C(T) − ‖f‖C(T)

∣∣ ≤ ‖f − SNf‖C(T),

we have
lim
N→∞

∣∣‖SNf‖C(T) − ‖f‖C(T)
∣∣ = 0

for all f ∈ Uc(T). Thus, we see that

Vc(T) =
{
f ∈ C(T) : lim sup

N→∞

∣∣‖SNf‖C(T) − ‖f‖C(T)
∣∣ > 0

}
.

It is immediately clear that the Turing machines TMsU and
TMsV cannot exist simultaneously.

Corollary 1. There exist no two Turing machines TMsU and TMsV
such that, for all f ∈ Cc(T), TMsU stops exactly when f ∈ Uc(T)
and TMsV stops exactly when f ∈ Vc(T).

Proof. Assume that two such Turing machines exist. Then we can
construct a new Turing machine

TMdU (f) =

{
1, TMsU (f) stops,
0, TMsV(f) stops.

That is, we would let run both Turing machines in parallel and stop
if one of the Turing machines stops. Note that for f ∈ Cc(T) it is
guaranteed that exactly one of the Turing machines stops. Hence,
the Turing machine TMdU would solve our original problem of de-
ciding whether f ∈ Uc(T), which is not possible according to The-
orem 1.

Moreover, for the Turing machine TMsU we can answer the
question of existence in the negative.

Theorem 2. There exists no Turing machine TMsU such that, for
all f ∈ Cc(T), TMsU stops exactly when f ∈ Uc(T).

Theorem 2 implies that the set of functions in Cc(T) with uni-
form convergence of the Fourier series cannot have a computable
characterization. The question whether the Turing machine TMsV
exists is open.

Proof. We prove the assertion by contradiction. Assume that there
exists a Turing machine TMsU that stops exactly when f ∈ Uc(T).
Clearly, we have 0 ∈ Uc(T). Further, a result from [27] shows that
there exists an infinite dimensional closed subspace S ⊂ C(T) such
that

lim sup
N→∞

‖SNf‖C(T) =∞ (9)

for all f ∈ S, f 6= 0. According to our construction of S in [27],
the set S ∩Cc(T) is not empty. We have 0 ∈ S, and for each f ∈ S
with ‖f‖C(T) > 0 we have (9) and consequently f ∈ Vc(T). Hence,
for f ∈ S ∩Cc(T), we have f ∈ Uc(T) if and only if ‖f‖C(T) = 0.
Thus, for f ∈ S ∩ Cc(T), TMsU stops if and only if ‖f‖C(T) = 0.

Let h ∈ S ∩ Cc(T), h 6= 0. We have ‖h‖C(T) ∈ Rc and
‖h‖C(T) > 0. For λ ∈ Rc, λ ≥ 0, we set g = λh/‖h‖C(T). Since
λ/‖h‖C(T) is computable, it follows that g ∈ S ∩ Cc(T). Note that
‖g‖C(T) = λ.

We further use the fact that there exists a Turing machine TM>

that stops if and only if ‖g‖C(T) > 0 [24, p. 14]. Using the Tur-
ing machines TMsU and TM> we can construct a Turing machine
TMz : Rc → {0, 1} as follows: Given λ ∈ Rc, we compute g as
well as ‖g‖C(T). Then we start the Turing machine TMsU with g
as input and the Turing machine TM> with ‖g‖C(T) as input. We
know that TMsU stops if and only if λ = ‖g‖C(T) = 0, and that
TMg stops if and only if λ = ‖g‖C(T) > 0. This gives us a Turing
machine TMz with

TMz(λ) =

{
1, λ > 0,

0, λ = 0.

However, such a Turing machine does not exist [24, p. 14].

5. RELATION TO PRIOR WORK

Although the convergence behavior of the Fourier series is impor-
tant and a well studied topic in classical analysis [28], questions
of computability have not caught much attention. The convergence
of Fourier series for computable Lebesgue integrable functions was
studied in [29], and it has been shown that the set of L1-computable
functions, whose Fourier series diverges a.e. is big in a certain sense.
Further, a computable function f(t), the Fourier series of which con-
verges uniformly, but the convergence is not effective for t = 0, was
given in [30]. In the present paper we constructed a computable con-
tinuous function with divergence. It would be practically interesting
to have a Turing machine that always can decide whether the Fourier
series of a continuous function converges uniformly. We have shown
that such a Turing machine does not exist. Even the simpler question
if there exists a Turing machine which accepts only those continuous
functions for which the Fourier series converges uniformly, has to be
answered in the negative. To the best of our knowledge there exist
no further publications that treat this topic.

In general, it seems that the signal approximation, and in partic-
ular the possible divergence of approximation processes, is often not
given the proper attention. One source of this insouciance are cal-
culations that are based on distributions, which give a false sense of
security. A closer analysis of those calculations sometimes reveals
that the made claims are not justified [31, 32]. Recently, even for
benign signal spaces, divergence phenomena could be shown for the
Shannon sampling series [26,33–35]. This once more highlights that
it would be desirable to have an algorithm that can decide whether
a general approximation process converges or diverges for a given
function. The results in this paper show that for the Fourier trans-
form such an algorithm cannot exist.

5016

6. REFERENCES

[1] S. G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Transactions on Signal Process-
ing, vol. 41, no. 12, pp. 3397–3415, Dec. 1993.

[2] M. Unser, “Splines: a perfect fit for signal and image process-
ing,” IEEE Signal Processing Magazine, vol. 16, no. 6, pp. 22–
38, Nov. 1999.

[3] M. Unser, “Sampling–50 years after Shannon,” Proceedings of
the IEEE, vol. 88, no. 4, pp. 569–587, Apr. 2000.

[4] P. L. Butzer and J. Lei, “Approximation of signals using mea-
sured sampled values and error analysis,” Communications in
Applied Analysis. An International Journal for Theory and Ap-
plications, vol. 4, no. 2, pp. 245–255, 2000.

[5] P. S. Huggins and S. W. Zucker, “Greedy basis pursuit,” IEEE
Transactions on Signal Processing, vol. 55, no. 7, pp. 3760–
3772, Jul. 2007.

[6] G. Schmeisser and F. Stenger, “Sinc approximation with a
Gaussian multiplier,” Sampling Theory in Signal and Image
Processing, vol. 6, no. 2, pp. 199–221, May 2007.

[7] S. G. Mallat, “A theory for multiresolution signal decomposi-
tion: The wavelet representation,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674–
693, Jul. 1989.

[8] P. Steffen, P. N. Heller, R. A. Gopinath, and C. . S. Burrus,
“Theory of regular M-band wavelet bases,” IEEE Transactions
on Signal Processing, vol. 41, no. 12, pp. 3497–3511, Dec.
1993.

[9] G. Wang, J. Zhang, and G.-W. Pan, “Solution of inverse prob-
lems in image processing by wavelet expansion,” IEEE Trans-
actions on Image Processing, vol. 4, no. 5, pp. 579–593, May
1995.

[10] I. Daubechies, Ten Lectures on Wavelets. Siam, 1992, vol. 61.

[11] S.-C. Pei, M.-H. Yeh, and T.-L. Luo, “Fractional Fourier se-
ries expansion for finite signals and dual extension to discrete-
time fractional Fourier transform,” IEEE Transactions on Sig-
nal Processing, vol. 47, no. 10, pp. 2883–2888, Oct. 1999.

[12] D. Slepian and H. O. Pollak, “Prolate spheroidal wave func-
tions, Fourier analysis and uncertainty — I,” Bell System Tech-
nical Journal, vol. 40, pp. 43–63, Jan. 1961.

[13] A. H. Tewfik, D. Sinha, and P. Jorgensen, “On the optimal
choice of a wavelet for signal representation,” IEEE Transac-
tions on Information Theory, vol. 38, no. 2, pp. 747–765, Mar.
1992.

[14] J.-C. Pesquet, H. Krim, and H. Carfantan, “Time-invariant or-
thonormal wavelet representations,” IEEE Transactions on Sig-
nal Processing, vol. 44, no. 8, pp. 1964–1970, Aug. 1996.

[15] L. R. Rabiner, “Techniques for designing finite-duration
impulse-response digital filters,” IEEE Transactions on Com-
munication Technology, vol. 19, no. 2, pp. 188–195, Apr. 1971.

[16] Y. Katznelson, An Introduction to Harmonic Analysis. Cam-
bridge University Press, 2004.

[17] A. M. Turing, “On computable numbers, with an application to
the Entscheidungsproblem,” Proceedings of the London Math-
ematical Society, vol. s2-42, no. 1, pp. 230–265, Nov. 1936.

[18] A. M. Turing, “On computable numbers, with an application to
the Entscheidungsproblem. A correction,” Proceedings of the
London Mathematical Society, vol. s2-43, no. 1, pp. 544–546,
Jan. 1937.

[19] K. Weihrauch, Computable Analysis: An Introduction.
Springer-Verlag, 2000.

[20] G. S. Boolos, J. P. Burgess, and R. C. Jeffrey, Computability
and Logic. Cambridge University Press, 2002.

[21] R. I. Soare, Recursively Enumerable Sets and Degrees, ser. Per-
spectives in Mathematical Logic. Springer-Verlag Berlin Hei-
delberg, 1987.

[22] E. Specker, “Nicht konstruktiv beweisbare Sätze der Analysis,”
The Journal of Symbolic Logic, vol. 14, no. 3, pp. 145–158,
Sep. 1949.

[23] J. Avigad and V. Brattka, “Computability and analysis: the
legacy of Alan Turing,” in Turing’s Legacy: Developments
from Turing’s Ideas in Logic, R. Downey, Ed. Cambridge
University Press, 2014.

[24] M. B. Pour-El and J. I. Richards, Computability in Analysis
and Physics. Springer-Verlag, 1989.

[25] T. Rado, “On non-computable functions,” Bell System Techni-
cal Journal, vol. 41, no. 3, pp. 877–884, May 1962.

[26] H. Boche, U. J. Mönich, and E. Tampubolon, “Spaceability and
strong divergence of the Shannon sampling series and applica-
tions,” Journal of Approximation Theory, vol. 222, pp. 157–
174, Oct. 2017.

[27] H. Boche and U. J. Mönich, “Divergence behavior of se-
quences of linear operators with applications,” Journal of
Fourier Analysis and Applications, 2018.

[28] A. Zygmund, Trigonometric Series, 2nd ed. Cambridge Uni-
versity Press, 1993, vol. I and II.

[29] P. Moser, “On the convergence of Fourier series of computable
Lebesgue integrable functions,” Electronic Notes in Theoreti-
cal Computer Science, vol. 202, pp. 13–18, Mar. 2008.

[30] M. B. Pour-El and I. Richards, “Computability and noncom-
putability in classical analysis,” Transactions of the American
Mathematical Society, vol. 275, no. 2, pp. 539–560, Feb. 1983.

[31] H. Boche and U. J. Mönich, “Distributional behavior of con-
volution sum system representations,” IEEE Transactions on
Signal Processing, vol. 66, no. 19, pp. 5056–5065, Oct. 2018.

[32] H. Boche, U. Mönich, and B. Meinerzhagen, “Non-existence
of convolution sum system representations,” 2019, in prepara-
tion.

[33] H. Boche and U. J. Mönich, “There exists no globally uni-
formly convergent reconstruction for the Paley-Wiener space
PW1

π of bandlimited functions sampled at Nyquist rate,” IEEE
Transactions on Signal Processing, vol. 56, no. 7, pp. 3170–
3179, Jul. 2008.

[34] H. Boche and U. J. Mönich, “Sampling of deterministic sig-
nals and systems,” IEEE Transactions on Signal Processing,
vol. 59, no. 5, pp. 2101–2111, May 2011.

[35] H. Boche and B. Farrell, “Strong divergence of reconstruction
procedures for the Paley-Wiener space PW 1

π and the Hardy
spaceH1,” Journal of Approximation Theory, vol. 183, pp. 98–
117, Jul. 2014.

5017

		2019-03-18T10:56:59-0500
	Preflight Ticket Signature

