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ABSTRACT

In this paper we study downsampling for bandlimited signals.
Downsampling in the discrete-time domain corresponds to a re-
moval of samples. For any downsampled signal that was created
from a bandlimited signal with finite energy, we can always com-
pute a bandlimited continuous-time signal such that the samples
of this signal, taken at Nyquist rate, are equal to the downsampled
discrete-time signal. However, as we show, this is no longer true for
the space of bounded bandlimited signals that vanish at infinity. We
explicitly construct a signal in this space, which after downsampling
does not have a bounded bandlimited interpolation. This shows that
downsampling in this signal space is an operation that can lead out
of the set of discrete-time signals for which we have a one-to-one
correspondence with continuous-time signals.

Index Terms— bandlimited signal, downsampling, bandlimited
interpolation, boundedness

1. INTRODUCTION

Downsampling or decimation is a fundamental operation in sig-
nal processing that is used in numerous applications, for example
in filter banks [1, 2], image processing [3–5], and communica-
tion systems [6, 7]. Downsampling is the process of reducing the
sampling rate of a discrete-time signal by removing samples. In
this work we consider only one-dimensional downsampling. If we
downsample a signal {xk}k∈Z by a factor of two, we only keep
the samples {x2k}k∈Z, and the downsampled signal is given by
{xdown

k }k∈Z = {x2k}k∈Z. In practice, often the discrete-time signal
{xk}k∈Z is obtained by sampling a bandlimited continuous-time
signal f . If f is has finite energy and no frequencies larger than
2π, then we can reconstruct the continuous-time signal f from the
samples {f(k/2)}k∈Z by means of the Shannon sampling series. In
this paper we analyze whether this is still true for the downsampled
signal {xdown

k }k∈Z = {f(k)}k∈Z, i.e., if we can find a signal fπ with
bandwidth π that interpolates the downsampled signal {xdown

k }k∈Z,
i.e., satisfies fπ(k) = xdown

k , k ∈ Z. In the literature such a signal is
known as the bandlimited interpolation [8–11].

The correspondence between discrete-time and continuous-
time signals is a useful property in signal processing. For any
discrete-time signal we would like to have a bounded bandlimited
continuous-time signal, the samples of which taken at Nyquist rate
are equal to the discrete-time signal. In other words, we want to be
able to identify any discrete-time signal with a bounded bandlimited
continuous-time signal.
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Whether or not this is possible, clearly depends on the properties
of the discrete-time signal. For example, if the discrete-time signal
was obtained by sampling a bandlimited signal with finite energy,
then we can use the Shannon sampling series to uniquely recover the
bandlimited continuous-time signal. More precisely, a finite energy
signal f with bandwidth π can be reconstructed from the samples
{f(k)}k∈Z by means of the Shannon sampling series

f(t) =

∞∑
k=−∞

f(k)
sin(π(t− k))

π(t− k)
. (1)

Further, for any sequence {xk}k∈Z with finite energy, there exists
exactly one signal f with finite energy and bandwidth π such that
f(k) = xk for all k ∈ Z. Again, this signal can be obtained by
using the Shannon sampling series.

In general, the analysis of downsampling as a signal process-
ing operation is not given much attention because it is assumed that
this procedure does not lead to any fundamental problems. In many
signal processing books [8, p. 52 and p. 162] and [9, p. 144], the
bandlimited interpolation, i.e., the continuous-time signal that corre-
sponds to the downsampled sequence, is formally obtained by using
a convolution theorem and distribution theory. First, the discrete-
time sequence of a continuous-time signal f is created by multiply-
ing f with a Dirac comb

fX(t) = f(t)·X(t) = f(t) ·
∞∑

k=−∞

δ(t− k) =

∞∑
k=−∞

f(k)δ(t− k).

Then, the bandlimited interpolation is obtained by convolving fX
with the impulse response of the ideal low-pass filter

fπ(t) = (fX ∗ sinc)(t) =

∞∑
k=−∞

f(k)
sin(π(t− k))

π(t− k)
. (2)

It is assumed that all above operations are well-defined, at least
if they are treated in a distributional setting [8,12,13]. The use of dis-
tributions has a long history in engineering [14–19], however, some-
times distributions are used only formally without a proper mathe-
matical justification. For example, for signal spaces other than the
space of bandlimited signals with finite energy, it is a priori not clear
whether the above manipulations and expressions are well-defined,
even when they are treated in the sense of distributions [20]. In [20]
it has been shown, in the context of sampling based system represen-
tations, that the sequence of partial sums diverges for certain signals
and systems, even when it is treated in a distributional sense. The
result was generalized in [21] by proving that for certain spaces of
continuous signals with finite energy it is impossible to define a dis-
tributional convolution sum system representation. This shows that
the above calculations based on distributions that led to (2), are not
true in the full generality that is claimed in some books [8, 13].
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2. NOTATION

By c0 we denote the set of all sequences that vanish at infinity, and
by C∞0 [0, 1] the space of all functions that have continuous deriva-
tives of all orders and are zero outside [0, 1]. For Ω ⊆ R, let Lp(Ω),
1 ≤ p < ∞, be the space of all measurable, pth-power Lebesgue
integrable functions on Ω, with the usual norm ‖ · ‖p, and L∞(Ω)
the space of all functions for which the essential supremum norm
‖ · ‖∞ is finite. The Bernstein space Bpσ , σ > 0, 1 ≤ p ≤ ∞,
consists of all functions of exponential type at most σ, whose re-
striction to the real line is in Lp(R) [22, p. 49]. The norm for Bpσ
is given by the Lp-norm on the real line. A function in Bpσ is called
bandlimited to σ. B∞σ,0 denotes the space of all functions in B∞σ
that vanish at infinity. By PWp

σ , 1 ≤ p ≤ ∞, we denote the
Paley–Wiener space of functions f with a representation f(z) =
1/(2π)

∫ σ
−σ g(ω) eizω dω, z ∈ C, for some g ∈ Lp[−σ, σ]. If

f ∈ PWp
σ then g(ω) = f̂(ω). The norm for PWp

σ is given by
‖f‖PWp

σ
= (1/(2π)

∫ σ
−σ|f̂(ω)|p dω)1/p. PW2

σ is the frequently
used space of bandlimited functions with bandwidth σ and finite en-
ergy.

Distributions are continuous linear functionals on a space of test
functions. D is the space of all test functions φ : R → C that
have continuous derivatives of all orders and are zero outside some
finite interval. D′ denotes the dual space of D, i.e., the space of
all distributions that can be defined on D. For locally integrable
functions g we can define the linear functional

φ 7→
∫ ∞
−∞

g(t)φ(t) dt (3)

on the space D. It can be proven that this functional is continuous
and thus defines a distribution [23]. Distributions of the type (3) are
called regular distributions. A sequence of distributions {fk}k∈N in
D′ is said to converge inD′ if for every φ ∈ D the sequence of num-
bers {fkφ}k∈N converges. Thus, a sequence of regular distributions,
which is induced by a sequence of functions {gk}k∈N according to
(3), converges in D′ if for every φ ∈ D the sequence of numbers
{
∫∞
−∞ gk(t)φ(t) dt}k∈N converges.

3. PRELIMINARY CONSIDERATIONS

Let f ∈ PW2
2π be a bandlimited signal with bandwidth 2π and

finite energy. Then f is completely determined by its samples
{f( k

2
)}k∈Z. Removing every second sample, i.e., keeping only the

samples {xdown
k }k∈Z = {f(k)}k∈Z corresponds to a downsampling

factor of two. The continuous-time signal fπ that corresponds to the
downsampled discrete-time signal {xdown

k }k∈Z is given by

fπ(t) =

∞∑
k=−∞

f(k)
sin(π(t− k))

π(t− k)
, t ∈ R. (4)

The series in (4) converges in the L2-norm, as well as uniformly on
the real axis, and we have fπ ∈ PW2

π ⊂ PW2
2π . Hence, for the

signal space PW2
2π downsampling and bandlimited interpolation of

the downsampled signal are well-defined.
However, downsampling is often used also for other, larger sig-

nal spaces, like B∞2π,0 or B∞2π , both of which are important for exam-
ple in communications. In the present paper we study downsampling
for these larger spaces. A signal f ∈ B∞2π,0 is uniquely determined
by its samples f( k

2
), k ∈ Z, and for all T > 0 we have

lim
N→∞

max
[−T,T ]

∣∣∣∣∣f(t)−
N∑

k=−N

f

(
k

2

)
sin(2π(t− k

2
))

2π(t− k
2
)

∣∣∣∣∣ = 0,
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Fig. 1. Plot of the signal gδ(t) for δ = 1/2.

i.e., the Shannon sampling series converges locally uniformly to the
signal f [24]. Further we have {f( k

2
)}k∈Z ∈ c0. Clearly, the down-

sampled discrete-time signal also satisfies {f(k)}k∈Z ∈ c0. How-
ever, the question is whether a continuous-time signal fπ that in-
terpolates {f(k)}k∈Z can be constructed, and if yes if it is still a
well-behaved signal.

It is well-known that there exist sequences that do not possess a
bounded bandlimited interpolation. For example, for the sequence

xk =

{
0, k ≤ 0,
(−1)k

log(1+k)
, k ≥ 1,

there exists no signal fπ ∈ B∞π with fπ(k) = xk for all k ∈ Z [25].
This already shows that the distributional approach in [8, 9], which
we discussed in Section 1, is flawed.

Note that the situation that is analyzed in the present paper is
more complicated. Here, the sequence is not freely chosen but ob-
tained by downsampling a bounded bandlimited signal. In fact, the
signal that we will construct later is a bandpass signal with arbitrarily
small effective bandwidth.

4. DOWNSAMPLING FOR BANDLIMITED SIGNALS

In the following two theorems the signal

γδ(t) = eiπt gδ(t), t ∈ R, (5)

with

gδ(t) =
1

π

∫ δπ

0

sin(ωt)

ω log( π
ω

)
dω, t ∈ R,

will play a central role. δ ∈ (0, 1) is a parameter that specifies the
bandwidth of the signal. The signal g1/2 is visualized in Fig. 1. We
postpone all proofs until Section 5.

Theorem 1. Let δ ∈ (0, 1), and let γδ ∈ B∞(1+δ)π,0 be the signal
defined in (5). There exists no fπ ∈ B∞π with fπ(k) = γδ(k) for all
k ∈ Z. That is, there exists no bounded bandlimited interpolation
for the downsampled sequence {γδ(k)}k∈Z.

As the next theorem shows, for the downsampled sequence
{γδ(k)}k∈Z, the Shannon sampling series diverges for all t ∈ R\Z.
Moreover, the divergence even holds in a distributional setting.
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Fig. 2. Plot of the sums (SNγδ)(t) for δ = 1/2 andN = 5, 40, 320.

Theorem 2. Let δ ∈ (0, 1), and let γδ ∈ B∞(1+δ)π,0 be the signal
defined in (5). Then, for all t ∈ R \ Z, we have

lim
N→∞

∣∣∣∣∣
N∑

k=−N

γδ(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣ =∞.

Further, there exists a φ1 ∈ C∞0 [0, 1] such that

lim
N→∞

∣∣∣∣∣
∫ ∞
−∞

N∑
k=−N

γδ(k)
sin(π(t− k))

π(t− k)
φ1(t) dt

∣∣∣∣∣ =∞,

i.e., the series diverges in D′.

This shows that the distributional approach, discussed in the in-
troduction, does not work, because the expression (2) diverges even
in D′. In order to illustrate the divergence observed in Theorem 2,
the partial sums of the Shannon sampling series

(SNγδ)(t) =

N∑
k=−N

γδ(k)
sin(π(t− k))

π(t− k)

are plotted in Fig. 2 for δ = 1/2 and N = 5, 40, 320.

Remark 1. The signal γδ has a remarkably simple structure. It is
not constructed as an infinite series, but defined as a simple integral
expression.

Remark 2. γδ is a bandpass signal that is created by modulating the
lowpass signal gδ . Since the spectrum of the lowpass signal gδ is
concentrated on [−δπ, δπ], gδ is completely determined by its sam-
ples {gδ(k/δ)}k∈Z. Further, the effective bandwidth of the bandpass
signal γδ is 2δπ.

5. PROOFS

We start with stating several properties of gδ(t), which is illustrated
in Fig. 1. In particular, it is important that gδ , δ ∈ (0, 1), is a
bounded bandlimited signal that vanishes at infinity.

Lemma 1. Let δ ∈ (0, 1). Then we have gδ ∈ B∞δπ,0. Further, gδ
satisfies gδ(0) = 0 and gδ(t) = −gδ(−t) for all t ∈ R.

Due to space constraints we omit the proof of Lemma 1. For the
proofs of our main theorems we need several auxiliary results. We
start with a fact about the local behavior of the Shannon sampling
series for signals in B∞π [24, Theorem 1].

Fact 1. For all T > 0 there exists a constant C1(T ) such that for
all f ∈ B∞π and all N ∈ N we have

max
t∈[−T,T ]

∣∣∣∣∣
N∑

k=−N

f(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣ ≤ C1(T )‖f‖B∞
π
.

Second, we need two facts about
∑∞
k=1 sin(kω)/k, which is the

Fourier series of the function

u(ω) =

{
1
2
(π − ω), 0 < ω < 2π,

0, ω = 0 or ω = 2π.

On all closed intervals, excluding the jump discontinuities, we have
uniform convergence [26, p. 4, Theorem 2.6].

Fact 2. For all γ > 0 we have

lim
N→∞

max
ω∈[γ,2π−γ]

∣∣∣∣∣u(ω)−
N∑
k=1

sin(kω)

k

∣∣∣∣∣ = 0.

Further, the partial sums are strictly positive on the interval
(0, π) [26, p. 62, Theorem 9.4].

Fact 3. For all N ≥ 1 and all ω ∈ (0, π) we have

N∑
k=1

sin(kω)

k
> 0.

Now we are in the position to prove Theorem 1.

Sketch of the proof of Theorem 1. Let δ ∈ (0, 1) be arbitrary but
fixed and γδ the signal defined in (5). Then we have γδ ∈ B∞(1+δ)π,0.
We further have γδ(k) = eikπ gδ(k) = (−1)kgδ(k), k ∈ Z. Thus,
for t ∈ R \ Z, we obtain

(SNγδ)(t) =

N∑
k=−N

(−1)kgδ(k)
sin(π(t− k))

π(t− k)

=
sin(πt)

π

N∑
k=1

gδ(k)

(
1

t− k −
1

t+ k

)
,

where we used that sin(π(t− k)) = (−1)k sin(πt). It follows that

(SNγδ)(t) +
sin(πt)

π

N∑
k=1

2gδ(k)

k

=
sin(πt)

π

N∑
k=1

gδ(k)

(
t

(t− k)k
+

t

(t+ k)k

)
.

For t ∈ [1/4, 3/4], using basic calculations, it can be shown that∣∣∣∣∣(SNγδ)(t) +
sin(πt)

π

N∑
k=1

2gδ(k)

k

∣∣∣∣∣ < 12 + π2

4π
‖gδ‖B∞

δπ,0
. (6)

It follows that

(SNγδ)(t) ≤ −
2 sin(π

4
)

π

N∑
k=1

gδ(k)

k
+

12 + π2

4π
‖gδ‖B∞

δπ,0
(7)

for all t ∈ [1/4, 3/4], where in the last equality we used the fact that
sin(πt) ≥ sin(π/4) for all t ∈ [1/4, 3/4].
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Let 0 < γ < δπ be arbitrary. Then, according to Fact 3, we
have

N∑
k=1

gδ(k)

k
=

1

π

∫ δπ

0

1

ω log( π
ω

)

N∑
k=1

sin(ωk)

k
dω

≥ 1

π

∫ δπ

γ

1

ω log( π
ω

)

N∑
k=1

sin(ωk)

k
dω.

Since, according to Fact 2, the series
∑∞
k=1 sin(ωk)/k dω con-

verges uniformly on [γ, δπ] to (π − ω)/2, we obtain

lim
N→∞

N∑
k=1

gδ(k)

k
≥ 1

π

∫ δπ

γ

1

ω log( π
ω

)

1

2
(π − ω) dω

>
1

2

∫ δπ

γ

1

ω log( π
ω

)
dω − δ

2 log( 1
δ
)

=
1

2
log

(
log(π

γ
)

log( 1
δ
)

)
− δ

2 log( 1
δ
)

for all γ with 0 < γ < δπ. Taking the limit γ → 0 shows that

lim
N→∞

N∑
k=1

gδ(k)

k
=∞. (8)

Combining (7) and (8), we see that

lim
N→∞

(SNγδ)(t) = −∞ (9)

for all t ∈ [1/4, 3/4].
Assume that there exists a signal fπ ∈ B∞π with fπ(k) = γδ(k),

k ∈ Z. Then, according to Fact 1, we have

max
t∈[−T,T ]

∣∣∣∣∣
N∑

k=−N

γδ(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣
= max
t∈[−T,T ]

∣∣∣∣∣
N∑

k=−N

fπ(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣ ≤ C1(T )‖f‖B∞
π

for all N ∈ N and T > 0. This is a contradiction (9). Thus, there
exists no signal fπ ∈ B∞π with fπ(k) = γδ(k), k ∈ Z.

Sketch of the proof of Theorem 2. From the proof of Theorem 1 we
already know that for the signal γδ ∈ B∞(1+δ)π,0, δ ∈ (0, 1), we have

lim
N→∞

(SNγδ)(1/2) = −∞. (10)

Let t1 ∈ R \ Z. We have∣∣∣∣ (SNγδ)( 1
2
)

sin(π
2

)
− (SNγδ)(t1)

sin(πt1)

∣∣∣∣ ≤ 1

π

N∑
k=−N

|gδ(k)|
|t1 − 1

2
|

| 1
2
− k||t1 − k|

≤
‖gδ‖B∞

δπ,0

π

N∑
k=−N

|t1 − 1
2
|

| 1
2
− k||t1 − k|

≤ ‖gδ‖B∞
δπ,0

C2(t1),

where C2(t1) is a positive constant that depends on t1 but not on N .
It follows that∣∣∣∣ (SNγδ)(t1)

sin(πt1)

∣∣∣∣ ≥ ∣∣∣∣ (SNγδ)( 1
2
)

sin(π
2

)

∣∣∣∣− ‖gδ‖B∞
δπ,0

C2(t1),

which, using (10), implies that limN→∞|(SNγδ)(t1)| = ∞. This
proves the fist assertion.

Let φ1 be a function in C∞0 [0, 1] with φ1(t) ≥ 0 for all t ∈ R
and

φ1(t) =

{
1, 2

5
≤ t ≤ 3

5
,

0, t ∈ R \ ( 1
4
, 3
4
).

From (7) we know that

(SNγδ)(t) ≤ −
2 sin(π

4
)

π

N∑
k=1

gδ(k)

k
+

12 + π2

4π
‖gδ‖B∞

δπ,0
.

for all t ∈ [1/4, 3/4]. It follows that∫ ∞
−∞

(SNγδ)(t)φ1(t) dt =

∫ 3/4

1/4

(SNγδ)(t)φ1(t) dt

≤ −
∫ 3/4

1/4

2 sin(π
4

)

π

N∑
k=1

gδ(k)

k
φ1(t) dt

+

∫ 3/4

1/4

12 + π2

4π
‖gδ‖B∞

δπ,0
φ1(t) dt

≤ −2

5

sin(π
4

)

π

N∑
k=1

gδ(k)

k
+

12 + π2

4π
‖gδ‖B∞

δπ,0
‖φ1‖L1(R),

and, using (8), that

lim
N→∞

∫ ∞
−∞

(SNγδ)(t)φ1(t) dt = −∞.

This completes the proof of Theorem 2.

6. RELATION TO PRIOR WORK

In classical signal processing books, the theoretical treatment of the
two operations, downsampling and bandlimited interpolation, is not
given special attention, despite their high importance in applications.
There are no studies of the analytical properties of downsampling
for bandlimited signals that vanish at infinity. The usual narrative is
that the bandlimited interpolation always exists [8, p. 52 and p. 162]
and [9, p. 144]. That this cannot be true for arbitrary signals, has
been demonstrated in [25], where a sequence in c0 was constructed
that possesses no bounded bandlimited interpolation. In the present
paper we go much further and study the existence of the bandlim-
ited interpolation for sequences that are created by downsampling
a discrete-time signal that has been generated by sampling a ban-
dlimited signals. By proving that this bandlimited interpolation does
not exist in general, we show that downsampling needs to be treated
carefully when considering more general signal spaces than PW2

σ .
We explicitly construct a signal that exhibits this behavior. To the
best of our knowledge, there have been no rigorous studies of this
problem so far, and our result is the first in this direction.

One reason for this lack of attention could be the fact that for
PW2

σ and sequences in `2, the analysis is trivial and no problems
occur. However, applications in signal processing, such as stochas-
tic processes and time-discrete systems, require the study of larger
classes of bandlimited and non-bandlimited signals. Already for the
space PW1

π there exist problems with the reconstruction of signals
from this space with the Shannon sampling series [27,28]. It is even
possible that the series diverges strongly [29, 30].

The results in this paper continue our research on the founda-
tions of signal processing, and in particular show that the rash appli-
cation of distributions, is problematic.
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