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ABSTRACT

The orthogonal matching pursuit (OMP) algorithm is a com-
monly used algorithm for recovering K-sparse signals x ∈
Rn from linear model y = Ax, where A ∈ Rm×n is a sens-
ing matrix. A fundamental question in the performance analy-
sis of OMP is the characterization of the probability that it can
exactly recover x for random matrix A. Although in many
practical applications, in addition to the sparsity, x usually
also has some additional property (for example, the nonzero
entries of x independently and identically follow the Gaus-
sian distribution), none of existing analysis uses these prop-
erties to answer the above question. In this paper, we first
show that the prior distribution information of x can be used
to provide an upper bound on ∥x∥21/∥x∥22, and then explore
the bound to develop a better lower bound on the probability
of exact recovery with OMP in K iterations. Simulation tests
are presented to illustrate the superiority of the new bound.

Index Terms— Exact sparse signal recovery, orthogonal
matching pursuit (OMP), exact recovery probability

1. INTRODUCTION

In many applications, such as sparse activity detection [1], we
need to reconstruct a K-sparse signal x (i.e., x has at most K
nonzero entries) from linear measurements:

y = Ax, (1)

where A ∈ Rm×n (m ≪ n) is a random sensing matrix
with independent and identically distributed (i.i.d.) Gaussian
N (0, 1/m) entries and y ∈ Rm is a given observation vector.
Numerous sparse recovery algorithms have been developed
to recover x based on y and A [2–4]. Among them, greedy
algorithms are very popular, especially when m,n and/or K
are large, due to their low computational complexities. The
orthogonal matching pursuit (OMP) algorithm [5], which is
described in Algorithm 1, is a widely-used greedy algorithm
due to its high efficiency and effectiveness [6].
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A fundamental question in the analysis of OMP is the
characterization of its exact recovery capability. To this end,
numerous works studied the recovery performance of OMP
(see, e.g., [7–13]). In particular, [14] develops a lower bound
on the probability of exact recovery of K-sparse x with K
iterations of OMP. To better understand its recover capability,
it is natural to ask whether this lower bound can be improved.

In many practical applications, in addition to sparsity, x
also has some other properties. For example, in wireless com-
munication problems involving the Rayleigh channel model,
the nonzero entries of x independently and identically follow
the standard Gaussian distribution N (0, 1) [1]. In speech
communication [15] and audio source separation [16], x has
exponentially decaying property, i.e., x is a K-sparse α-
strongly-decaying signal. Intuitively, a larger variation in the
magnitudes of the nonzero entries of x would typically lead
to better exact recovery performance of OMP in K iterations.

This paper aims to develop a theoretical framework to
capture the dependence of the exact recovery performance of
OMP on the disparity in the magnitudes of the nonzero entries
of x. Toward this end, we define the following measure of the
disparity, in term of a function ϕ(t), such that

∥xS∥21 ≤ ϕ(|S|)∥xS∥22 (2)

for any set S ⊆ Ω, where Ω is the support of x, |S| denotes the
number of elements of S and ϕ(t) is a nondecreasing function
of t > 0 with 0 < ϕ(t) ≤ t. Note that by the Cauchy-Schwarz
inequality, (2) with ϕ(t) = t holds for any K-sparse signal x.
Furthermore, (2) with ϕ(t) much smaller than t holds for α-
strongly-decaying signals and random signals (more details
will be provided in Sec. 2).

In this paper, we develop a lower bound on the proba-
bility of the exact recovery for K-sparse signals x that sat-
isfy (2), using K-iterations of OMP, as a function of ϕ(t).
Since the bound depends on the function ϕ(t), we develop
closed-form expressions of ϕ(t) for general K-sparse signals,
K-sparse α-strongly-decaying signals, and K-sparse signals
whose nonzero entries independently and identically follow
the N (0, 1) distribution, leading to exact lower bounds for
these three classes of sparse signals.
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Algorithm 1 The OMP Algorithm [5]
Input: y, A, and stopping rule.
Initialize: k = 0, r0 = y,S0 = ∅.
until the stopping rule is met

1: k = k + 1,
2: sk = argmax

1≤i≤n
|⟨rk−1,Ai⟩|,

3: Sk = Sk−1

∪
{sk},

4: x̂Sk
= argmin

x∈R|Sk|
∥y −ASk

x∥2,

5: rk = y −ASk
x̂Sk

.
Output: x̂ = argmin

x:supp(x)=Sk

∥y −Ax∥2.

2. MAIN RESULTS

In the following, we provide a lower bound on the probability
that OMP can exactly recover any K-sparse signal x satisfy-
ing (2) in K iterations for random sensing matrix A.

Theorem 1 Let A ∈ Rm×n be a random matrix with i.i.d.
N (0, 1/m) entries, and x be a K-sparse signal that satisfies
(2) for some particular ϕ(t). Define the event S as

S = {OMP can exactly recover x in (1) in K iterations}.
(3)

Denote interval I =

(
0, 1−

√
K
m −

√
2ϕ(K)
mπ

]
, then

P(S) ≥ max
ϵ∈I

(1− e−
ϵ2m
2 )

K∏
k=1

1− e−
η2m
2ϕ(k)√
πm

2ϕ(k)η

(n−K)

,

(4)

where η = 1−
√
K/m− ϵ.

The proof of Theorem 1 can be found in the journal ver-
sion of this paper. In the following, we give some remarks.

Theorem 1 is important from both theoretical and prac-
tical applications points of view. Theoretically, Theorem 1
characterizes the recovery performance of OMP. In practical
applications, we can use (4) to give a lower bound on P(S). If
the lower bound is large, saying close to 1, then we are con-
fident to use the OMP algorithm to do the reconstruction. If
the lower bound is small, saying much smaller than 1, then
another more effective recovery algorithm (such as the basis
pursuit [2]) may need to be used.

As far as we know, Theorem 1 gives the first lower bound
on P(S) by using the extra information (i.e., inequality (2)) of
the K-sparse signal x. Note that [14, Theorem 6] also gives a
lower bound on P(S), but it only uses the K-sparsity property
of x. Since Theorem 1 uses not only the sparsity of x but
also its additional property (2) to derive the lower bound, it
provides a sharper lower bound on P(S) than [14, Theorem

6]. More details on the comparison of the two lower bounds
are presented in Sec. 3.

Theorem 1 can theoretically explain that OMP has better
recovery ability in recovering sparse signals with larger varia-
tion of the magnitudes of their nonzero entries. Specifically, it
is not hard to see that the right-hand side of (4) becomes larg-
er as ϕ(t) (or equivalently ∥xS∥1

∥xS∥2
(see (2))) becomes smaller.

By the Cauchy-Schwarz inequality, ∥xS∥1

∥xS∥2
achieves the maxi-

mal value
√
|S| when the magnitudes of all the entries of xS

are the same. Hence, the probability of exact recovery of K-
sparse x, whose non-zero entries have identical magnitudes,
has the smallest lower bound. On the other hand, if the vari-
ation of the magnitudes of the nonzero entries of x are large,
then ∥xS∥1

∥xS∥2
is small, and hence the right-hand side of (4) is

large. Therefore, generally speaking, the probability of the
exact recovery of this kind of K-sparse signals x is large.

As (4) depends on ϕ(t), to lower bound P(S), we need to
know ϕ(t). In the following, we give closed-form expressions
of ϕ(t) for three cases. We begin with the first case where
we only know that x is K-sparse. By the Cauchy-Schwarz
inequality, one can see that (2) holds if ϕ(t) = t. Hence, by
Theorem 1, we have

Corollary 1 Let A ∈ Rm×n be a random matrix with i.i.d.
N (0, 1/m) entries and x be an arbitrary K-sparse signal.
Then (4) holds with ϕ(t) = t.

Note that [14, Theorem 6] shows that

P(S)

≥ max
ϵ∈(0,

√
m/K−1)

(1− e−
ϵ2m
2 )

(
1− e−

(
√

m/K−1−ϵ)2

2

)K(n−K)

(5)

where the event S is defined in (3). Since the lower bounds
on P(S) given by Corollary 1 and (5) are complicated, it is
difficult to theoretically compare them. However, from the
simulation results in Sec. 3, one can see that the new bound
given by Corollary 1 is much sharper than that given by (5).

Next, we give a lower bound on P(S) for recovering α-
strongly-decaying signal. First, we state the precise definition
of α-strongly-decaying signals as follows:

Definition 1 ( [10]) Without loss of generality, let all the en-
tries of K-sparse x be ordered as

|x1| ≥ |x2| ≥ . . . ≥ |xK | ≥ 0, xj = 0, for K + 1 ≤ j ≤ n.

Then x is called as a K-sparse α-strongly-decaying signal
(α > 1) if |xi| ≥ α|xi+1|, 1 ≤ i ≤ K − 1.

The following lemma provides a closed-form expression
of ϕ(t) for K-sparse α-strongly-decaying signals.
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Fig. 1. ϕ(t) versus α with α = 1, 1.5, 2, 2.5

Lemma 1 Let x be a K-sparse α-strongly-decaying signal,
then (2) holds with

ϕ(t) =
(αt − 1)(α+ 1)

(αt + 1)(α− 1)
, t > 0. (6)

The proof of Lemma 1 can be found in the journal version
of this paper.

To show how large the ϕ(t) in (6) is, we plot it for differ-
ent values of α in Fig.1, where for comparison, we also plot
ϕ(t) = t (note that this is equivalent to the α = 1 case as
lim
α→1

ϕ(t) = t). Fig. 1 shows that ϕ(t) is much smaller than t

for large t and/or α.
Theorem 1 and Lemma 1 implies the following corollary:

Corollary 2 Let A ∈ Rm×n be a random matrix with i.i.d.
N (0, 1/m) entries, and x be a K-sparse α-strongly-decaying
signal. Then (4) holds with ϕ(t) being defined in (6).

Since ϕ(t) in (6) is much smaller than t when t and/or α
is large (see Fig. 1), the right-hand side of (4) with ϕ(t) being
defined in (6) can be much larger than that with ϕ(t) = t.
This essentially implies that P(S) is larger for recovering α-
strongly-decaying sparse signals than that for recovering flat
sparse signals (i.e., the magnitudes of all the nonzero entries
are identical). More details on this are given in Sec. 3.

Finally, we consider the recovery of random signals x.
Specifically, we assume that x is K-sparse with xΩ ∼
N (0, σ2I) for certain σ. This kind of sparse signals arise
from many applications, such as sparse activity users de-
tection [1]. If xΩ ∼ N (0, σ2I), then xΩ/σ ∼ N (0, I).
Since ∥xS∥1

∥xS∥2
= ∥xS/σ∥1

∥xS/σ∥2
, to find a function ϕ(t) such that (2)

holds for K-sparse signal x satisfying xΩ ∼ N (0, σ2I), we
only need to find a ϕ(t) such that (2) holds for K-sparse x
satisfying xΩ ∼ N (0, I). Since x is a random signal, it is
impossible to find a ϕ(t) such that (2) always holds. But we
can find a ϕ(t) such that (2) holds with high probability.
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Fig. 2. The empirical probability of ∥x∥21/∥x∥22 ≤ ϕ(t) over
50000 realizations of x ∈ Rt ∼ N (0, I)

If xΩ ∼ N (0, I), then the expected value of ∥x∥21 divided
by the expected value of ∥x∥22 equals to

√
2/π|Ω|. Therefore,

we may try ϕ(t) =
√

2/πt. However, from simulations, we
found that (2) does not hold with high probability when |Ω|
is small. Fortunately, ϕ(t) defined in (7) below is a suitable
function to ensure (2) holds with high probability:

ϕ(t) =


0.8 t t ≥ 30

24 25 ≤ t ≤ 29

t t ≤ 24

. (7)

Fig. 2 shows the probability of ∥x∥21/∥x∥22 ≤ ϕ(t) for
t = 1, 2 . . . , 50 over 50000 realizations, where ϕ(t) is defined
in (7). From Fig. 2, one can see that (2) holds with ϕ(t) in
(7) with probability larger than 0.996. Hence, we have the
following observation:

Observation 1 Suppose that A ∈ Rm×n is a random ma-
trix with i.i.d. N (0, 1/m) entries, and x is a K-sparse signal
satisfying xΩ ∼ N (0, σ2I) for certain σ. Then (4) holds
with ϕ(t) being defined in (7) with empirical probability larg-
er than 0.996.

Fig. 2 indicates that (2) holds with ϕ(t) being defined in
(7) with probability larger than 0.996. Since ϕ(t) being de-
fined in (7) is much smaller than ϕ(t) = t for large t, Obser-
vation 1 essentially implies that P(S) is larger for recovering
Gaussian sparse signals than that for recovering flat sparse
signals. More details on this will be provided in Sec. 3.

3. SIMULATION TESTS

This section performs simulations to illustrate Theorem 1,
Corollaries 1–2 and Observation 1 and compare them with
[14, Theorem 6].
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Fig. 3. Recovery of K-sparse flat signals

100 200 300 400 500 600 700 800 900 1000

Number of measurements (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e 

re
co

ve
re

d

K=15 Empirical
K=15 New BD
K=15 Exisiting BD
K=30 Empirical
K=30 New BD
K=30 Exisiting BD

Fig. 4. Recovery of K-sparse 1.1-strongly-decaying signals

We generated 1000 realizations of linear model (1). More
specifically, for each fixed m, n and K, for each realization,
we generated an A ∈ Rm×n with i.i.d. N (0, 1/m) entries;
we randomly selected K elements from the set {1, 2, . . . , n}
to form the support Ω of x; and then generated an x ∈ Rn

according to the following four cases: 1) xi = 1 for i ∈ Ω and
xi = 0 for i /∈ Ω; 2) The i-th element of xΩ is 1.1K−i for i ∈
Ω and xi = 0 for i /∈ Ω; 3) The i-th element of xΩ is 1.2K−i

for i ∈ Ω and xi = 0 for i /∈ Ω; 4) xΩ = randn(K, 1) and
xΩc = 0, where randn is a MATLAB built-in function. After
generating A and x, we set y = Ax. Then, we use OMP to
reconstruct x, and denote the number of exactly recovery of
x (note that x is thought as exactly recovered if the 2-norm of
the difference between the returned x and generated x is not
larger than 10−10) over 1000 as “Empirical”.

We respectively compute the right-hand side of (4) with
ϕ(t) = t, ϕ(t) defined by (6) with α = 1.1 and α = 1.2
and ϕ(t) defined by (7) for the four cases, and denote them
as “New BD”. To compare Corollaries 1–2 and Observation
1 with [14, Theorem 6], we also compute the right-hand side
of (5) and denote it as “Existing BD”. Since the lower bound
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Fig. 5. Recovery of K-sparse 1.2-strongly-decaying signals

100 200 300 400 500 600 700 800 900 1000

Number of measurements (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

ce
nt

ag
e 

re
co

ve
re

d

K=15 Empirical
K=15 New BD
K=15 Exisiting BD
K=30 Empirical
K=30 New BD
K=30 Exisiting BD

Fig. 6. Recovery of K-sparse Gaussian signals

on P(S) given by [14, Theorem 6] uses the sparsity of x only,
“Existing BD” are the same for all the four cases.

Figs. 3-6 respectively display “Empirical”, “New BD”
and “Existing BD” for m = 100 : 50 : 1000 and n = 1024
with K = 15 and K = 30 for x from cases 1-4. Figs. 3-
6 show that “New BD” are much larger than “Existing BD”
for all the four cases which indicates that the lower bound-
s on P(S) given by Corollaries 1–2 and Observation 1 are
much sharper than that given by [14, Theorem 6]. They also
show that OMP has significantly better recovery performance
in recovering α-strongly-decaying and Gaussian sparse sig-
nals than recovering flat sparse signals, and the recovery per-
formance of the OMP algorithm for recovering α-strongly-
decaying sparse signals becomes better as α gets larger.

4. CONCLUSIONS

In this paper, we developed lower bounds on the probability
of exact recovery using K iterations of OMP for x satisfying
a condition that characterizes the variations in the magnitudes
of the nonzero entries of x.
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