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ABSTRACT

This paper proposes a randomized optimization framework
for constrained signal reconstruction, where the word “con-
strained” implies that data-fidelity is imposed as a hard con-
straint instead of adding a data-fidelity term to an objective
function to be minimized. Such formulation facilitates the se-
lection of regularization terms and hyperparameters, but due
to the non-separability of the data-fidelity constraint, it does
not suit block-coordinate-wise randomization as is. To re-
solve this, we give another expression of the data-fidelity con-
straint via epigraphs, which enables to design a randomized
solver based on a stochastic proximal algorithm with random-
ized epigraphical projection. Our method is very efficient es-
pecially when the problem involves non-structured large ma-
trices. We apply our method to CT image reconstruction,
where the advantage of our method over the deterministic
counterpart is demonstrated.

Index Terms— signal reconstruction, constrained opti-
mization, stochastic optimization, epigraphical projection

1. INTRODUCTION

Signal reconstruction from incomplete and/or degraded ob-
servation is a fundamental problem arising from various ap-
plications, such as medical imaging, microscopy, tomogra-
phy, spectral imaging and computational photography. Such
a problem is often reduced to a convex optimization problem
that involves a regularization term, modeling some desirable
properties on the signal of interest, and a data fidelity term,
enforcing consistency with observed data.

Proximal splitting algorithms [1, 2] have played a central
role in solving such problems. These methods, especially
primal-dual splitting type algorithms [3–8], are efficient in
the sense that they require only simple operations like matrix-
vector multiplications and evaluation of proximity operators.
However, even such a simple operation becomes computa-
tionally expensive in many applications. A typical case is
computed tomography (CT), where a matrix representing the
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observation process is large and is not structured1, resulting in
large computational costs and memory requirements [9, 10].

Recently, stochastic primal-dual splitting algorithms have
been intensively studied for stochastic optimization [11–14].
Roughly speaking, at each iteration, the algorithms activate
only the operations associated with randomly chosen vari-
ables, so that the said costs are significantly reduced. Actu-
ally, several studies show the utility of such block-coodinate-
wise randomization in image restoration [14–16].

Incidentally, the above studies aim at unconstrained for-
mulation, i.e., minimizing the sum of a regularization and a
data-fidelity term. On the other hand, constrained formula-
tion, i.e., minimizing a regularization term subject to a hard
constraint on data-fidelity has an important advantage over the
unconstrained one in terms of facilitating the selection of reg-
ularization terms and hyperparameters, as addressed in [17–
24]. However, such a data-fidelity constraint is not separable
as is, i.e., it cannot be decomposed into block-coordinate-wise
constraints, so that it does not suit randomized activation.

In this paper, we bridge the gap between the random-
ized nature of stochastic proximal methods and the non-
separability of data-fidelity constraints by leveraging epi-
graphical projection [23,25]. We focus on the ℓ2 data-fidelity
constraint, and introduce its equivalent expression via cer-
tain epigraphs, which enables us to deal with the constrained
formulation by stochastic proximal splitting algorithms with
randomized epigraphical projection. Specifically, we develop
a randomized solver for the problem based on a stochastic
primal-dual hybrid gradient algorithm [14]. The efficiency of
our method is demonstrated on CT image reconstruction.

2. PRELIMINARIES

2.1. Proximal Tools

The proximity operator [26] of index γ > 0 of a proper lower
semicontiuous convex function f ∈ Γ0(RN )2 is defined as

proxγf : RN → RN : x 7→ argmin
y

f(y) + 1
2γ ∥y − x∥2.

1Here the word “structured” means that the matrix-vector multiplication
can be computed efficiently via some operation. An instance of structured
matrices is a uniform blur matrix, which can be diagonalized by FFT.

2The set of all proper lower semicontinuous convex functions on RN is
denoted by Γ0(RN ).
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The indicator function of a nonempty closed convex set
C, denoted by ιC , is defined as

ιC(x) :=

{
0 if x ∈ C

∞ otherwise.

Since the function returns ∞ when the input vector is outside
of C, it acts exactly as the hard constraint represented by C
in minimization. The proximity operator of ιC is equivalent
to the (metric) projection onto C, i.e.,

proxγιC (y) = PC(y) := argmin
x∈C

∥y − x∥.

2.2. Stochastic Primal-Dual Hybrid Gradient Algorithm

A stochastic primal-dual hybrid gradient algorithm (SPDHG)
[14] was proposed to optimize the following problem:

min
x∈RN

∑I
i=1 fi(Aix) + g(x), (1)

where fi and g are proper lower semicontinuous convex func-
tions, and Ai are bounded linear operators (matrices). Here
we assume that the proximity operators of fi and g are easy
to compute.

SPDHG does not solve (1) directly but solves the saddle
point problem reformulated from (1), given by

min
x∈RN

sup
yi∈RMi

∑I
i=1⟨Aix,yi⟩ − f∗

i (yi) + g(x), (2)

where f∗
i are the convex conjugate of fi. We note that the

proximity operator of f∗
i can be computed via that of fi as

proxγf∗
i
(x) = x− γ prox 1

γ fi
( 1γx) [27, Theorem 14.3(ii)].

Let S ⊂ {1, . . . , I} be a random subset of the indices of
the dual variables yi in (2), and define A := (A1, . . . ,AI),
y := (y1, . . . ,yI) and Λ := diag(p−1

1 I, . . . , p−1
I I) with the

parameters pi being probabilities that an index is selected in
each iteration. Then SPDHG is formalized as follows: for
given x0, y0, τ > 0, ρi > 0, and y(0) = y0, iterate

x(k+1) = proxτg(x
(k) − τA∗y(k)),

Select S(k+1) ⊂ {1, . . . , I}

y
(k+1)
i =

{
proxρif∗

i
(y

(k)
i + ρiAix

(k+1)) if i ∈ S(k+1)

y
(k)
i otherwise

y(k+1) = y(k+1) +Λ(y(k+1) − y(k))
(3)

We should note that the matrix-vector multiplication A∗y(k)

in (3) can be computed by using only the selected Ai and the
previous dual variable (see [14, Remark 1 and 2] for details).
This means that each iteration requires both Ai and A∗

i to be
evaluated only for each selected index i ∈ S(k+1). With a
mild condition on the stepsizes τ and ρi, the algorithm con-
verges to an optimal solution of (2) almost surely in the sense
of the Bregman distance (see [14, Theorem 4.3] for details).

3. PROPOSED METHOD

3.1. Problem Formulation

Consider the following data observation model:

v = Φū+ n, (4)

where ū ∈ RN is a latent signal we wish to estimate, Φ ∈
RM×N represents an observation process, n ∈ RM is an ad-
ditive white Gaussian noise, and v ∈ RM is observed data.

Based on the model in (4), we aim at the following form
of constrained signal reconstruction:

min
u∈RN

∑J
j=1 Rj(Ψju) s.t.

{
∥Φu− v∥2 ≤ ε̄,

u ∈ [µ, µ]N ,
(5)

where Rj(Ψj ·) are regularization terms with functions Rj ∈
Γ0(RPj ) and matrices Ψj ∈ RPj×N , the first hard-constraint
is ℓ2 delity with the radius ε̄ > 0, and the second one is a
range constraint. We assume that the proximity operators of
Rj are available.

3.2. Reformulation via Epigraphs

Since the ℓ2 data-fidelity constraint in (5) is not separable, we
cannot directly solve the problem by stochastic algorithms
with block-coordinate-wise randomization. To circumvent
this, we give another expression of the constraint as follows:

∥Φu− v∥2 ≤ ε̄ ⇔


∥Φ1u− v1∥2 ≤ ε1,

...
∥ΦLu− vL∥2 ≤ εL,∑L
l=1 εl ≤ ε̄,

(6)

where εl ∈ R are additional variables, (Φ⊤
1 · · ·Φ⊤

L )
⊤ = Φ

and (v⊤
1 · · ·v⊤

L )
⊤ = v. Let us define the epigraphs of vl-

centered squared distance, denoted by Sl, and a half space V ,
as

Sl := {(x, η) ∈ RQl × R|∥x− vl∥2 ≤ η} (7)

V := {(η1, . . . , ηL) ∈ RL|
∑L
l=1 ηl ≤ ε̄}, (8)

Then, with (6), (7), and (8), Problem (5) can be rewritten as

min
u,ε1,...,εI

∑J
j=1 Rj(Ψju) s.t.



(Φ1u, ε1) ∈ S1,
...

(ΦLu, εL) ∈ SL,
u ∈ [µ, µ]N ,

(ε1, . . . , εL) ∈ V.

(9)

By introducing the indicator functions of the hard con-
straints in (9), which are denoted by ιSl , ι[µ,µ], and ιV , we
can further reformulate Problem (9) as

min
u,ε1,...,εL

∑J
j=1 Rj(Ψju) +

∑L
l=1 ιSl(Φlu, εl)

+ι[µ,µ]N (u) + ιV(ε1, . . . , εL). (10)

4994



3.3. Algorithm

Now we define ε := (ε1, . . . , εL) and x := (u, ε), let
e1, . . . , eL be the canonical basis of RL, and set I := J + L,

fi(Aix) := Ri(Ψiu) for i = 1, . . . , J,

fi(Aix) := ιSi−J (Φi−Ju, e
⊤
i−Jε) for i = J + 1, . . . , I,

g(x) := ι[µ,µ]N (u) + ιV(ε).

Then (10) is reduced to (1), so that we can solve (10) by
SPDHG. We describe the whole algorithm in Algorithm 1.

Remark 1 (Note on Algorithm 1).
(a) Our algorithm is designed to randomly pick up two indices
respectively from the two index sets: one is j ∈ {1, . . . , J}
with probability 1/J , and the other is l ∈ {1, . . . , L} with
probability 1/L, so that both the j-th regularization term and
the l-th data-fidelity epigraph are evaluated in each iteration.
(b) The matrix-vector multiplications required in each itera-
tion are only for the selected indices j and l. This implies
that the computational cost and memory requirement of Al-
gorithm 1 is much less than deterministic algorithms designed
for solving (5).
(c) We give a stepsize setting rule as follows:

ρψ := γ
maxj ∥Ψj∥ ∀j ∈ {1, . . . , J},

ρϕ := γ
maxl ∥Φl∥ ∀l ∈ {1, . . . , L},

τ := γ
max{J,L}max{maxj ∥Ψj∥,maxl ∥Φl∥} ,

where 0 < γ < 1. Similar stepsize setting is adopted in [14]
but our rule is simpler.

Remark 2 (Projection computations in Algorithm 1).
Since the proximity operator of the indicator function of a
nonempty closed convex set C equals to the projection onto
C, we need to compute P[µ,µ]N , PV , and PSi in our algorithm.
(a) The projection onto [µ, µ]N can be calculated by just push-
ing each entry of the input vector into [µ, µ].
(b) The projection onto V is given by [28, (3.3-10)]:

PV(ε) :=

{
ε if 1⊤ε ≤ ε̄

ε+ ε̄−1⊤ε
L 1 otherwise,

where 1 is the all-one vector of size L.
(c) The projection onto Sl is given as follows.

Proposition 1 (Epigraphical projection of squared distance).
Let z ∈ RN and let S := {(x, η) ∈ RN × R|∥x− z∥2 ≤ η}.
Then, for every (y, ζ) ∈ RN × R, by letting d := ∥y − z∥,
the projection onto S is given by

PS(y, ζ) = (αy + (1− α)z,max{α2d2, ζ}), (11)

where

α =

{
1 d2 ≤ ζ,
β
d otherwise,

(12)

β = (d4 + (d
2

16 − ( ζ3 − 1
6 )

3)
1
2 )

1
3 +

( ζ3−
1
6 )

( d4+( d
2

16 −( ζ3−
1
6 )

3)
1
2 )

1
3
. (13)

Proof sketch: Equation (11) can be easily obtained from [23,
Proposition 4]. Using the same proposition, we can see that

α = d−1 prox 1
2 (max{|·|2−ζ,0})2(d). (14)

Clearly, α = 1 when d2 < ζ. When d2 > ζ, by simple
calculation, the solution of the proximity operator in (14) is
reduced to the real solution of the following cubic equation:

2x3 + (1− 2ζ)x− d = 0. (15)

Finally, applying Cardano formula to (15) yields (13).3

Algorithm 1: Proposed algorithm for solving (5)

input : u(0), ε(0), z(0),w(0), t(0), ζ(0), ξ(0)

initialize: t(0) = t(0), ξ
(0)

= ξ(0)

1 for k = 0, . . . ,K − 1 do
2 u(k+1) = P[µ,µ]N (u

(k) − τt
(k)

);

3 ε(k+1) = PV(ε
(k) − τξ

(k)
);

4 Select j ∈ {1, . . . , J} and l ∈ {1, . . . , L}.;
5 z̃

(k)
j = z

(k)
j + ρψΨju

(k+1);

6 z
(k+1)
j = z̃

(k)
j − ρψ proxRj/ρψ

(z̃
(k)
j /ρψ);

7 ẑ
(k)
j = Ψ⊤

j (z
(k+1)
j − z

(k)
j );

8 w̃
(k)
l = w

(k)
l + ρϕΦlu

(k+1);
9 ζ̃

(k)
l = ζ

(k)
l + ρϕε

(k+1)
l ;

10 (w
(k+1)
l , ζ

(k+1)
l ) =

(w̃
(k)
l , ζ̃

(k)
l )− ρϕPSl((w̃

(k)
l , ζ̃

(k)
l )/ρϕ);

11 ŵ
(k)
l = Φ⊤

l (w
(k+1)
l −w

(k)
l );

12 ζ̂
(k)

l = el(ζ
(k+1)
l − ζ

(k)
l );

13 t(k+1) = t(k) + ẑ
(k)
j + ŵ

(k)
l ;

14 t
(k+1)

= t(k+1) + (1 + J)ẑj
(k) + (1 + L)ŵl

(k);

15 ξ(k+1) = ξ(k) + ζ̂
(k)

l ;

16 ξ
(k+1)

= ξ(k+1) + (1 + L)ζ̂l
(k)

4. NUMERICAL EXPERIMENTS

We examined the performance of the proposed method by
comparing it with the deterministic counterpart, i.e., the de-
terministic primal-dual hybrid gradient algorithm [3] on CT
image reconstruction. All experiments were performed using
MATLAB (R2017b), on a Windows 10 Pro laptop computer
with an Intel Core i7 2.1 GHz processor and 16 GB of RAM.

For the original image ū in (4), we used a head CT scan
image of size 128 × 128 (N = 16384) picked up from the
CT dataset [31]. The matrix Φ in (4) was set to a parallel
beam projection (Radon transform) matrix with 60 projection
angles. We would like to note that the nonzero entries of Φ

3One of the reviewers pointed out that the above result can also be proven
by a combination of [29, Proposition 5.1] and [30, Example 3.8].
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Fig. 1. Convergence profiles of Algorithm 1 (“Randomized”) and its deterministic counterpart (“Deterministic”) on CT image reconstruction
in terms of the primal distance (left), objective function value (center), and constraint error (right). Note that the optimal value of the objective
function (the black line in the center figure) was measured on u⋆.

Original (ū) Deterministic
PSNR=34.22 [dB]

Stochastic (L = 10)
PSNR=37.51 [dB]

Stochastic (L = 50)
PSNR=37.47 [dB]

Optimal (u⋆)
PSNR=37.47 [dB]

Fig. 2. Resulting images on CT image reconstruction (200 iterations [epochs]).

account for about 1.4% of all the entries, i.e., Φ is sparse,
so that this is advantageous for the deterministic algorithm,
compared with the cases of dense Φ. We also note that we
use a small image because the deterministic algorithm has to
load full Φ of size M ×N (M = 11100, N = 1282) in each
iteration. The observed data was generated by adding white
Gaussian noise with standard deviation σ = 10/255 to Φū.

A full CT image was estimated by constrained total vari-
ation (TV) minimization, which is a special case of Prob-
lem (5). Specifically, we employed the anisotropic TV [32]
for the regularization function Rj ◦ Ψj in Prob. (5). In this
case, J = 2, and the matrix Ψ1 and Ψ2 are equal to the ver-
tical and horizontal discrete gradient operators Dv and Dh

with Neumann boundary, respectively. Both R1 and R2 are
the ℓ1 norm, and its proximity operator can be calculated by
a simple O(N) soft-thresholding operation. We adopted an
eight-bit dynamic range constraint [0, 255]N for [µ, µ]N . For
a fair comparison, the parameter ε̄ was set to an oracle value,
i.e., ∥Φū − n∥. For the stepsizes of the deterministic algo-
rithm, we employed the setting rule suggested in [3]. For our
algorithm, see Remark 1(c) (Note: we choose γ = 0.99).

We adopted the following three convergence criteria:
(i) Primal distance: the squared distance between the current
estimate u(k) and an optimal solution u⋆, i.e., ∥u(n) − u⋆∥2.
Since u⋆ is analytically unavailable, it was pre-computed by
the deterministic algorithm with 2× 105 iterations.
(ii) Objective function value: the value of TV defined by
∥Dvu

(k)∥1 + ∥Dhu
(k)∥1.

(iii) Constraint error: the absolute difference between ε̄ and
∥Φu(k) − v∥2. Since any optimal solution u⋆ satisfies
∥Φu⋆ − v∥2 = ε̄, this value should converge to zero.

The left of Fig. 1 shows the convergence of the primal
distance, where ”iterations [epochs]” means that the num-
ber of iterations is divided by L. We examined the cases
of L = 10, 50 in this experiment. One sees that the pro-
posed method (“Randomized”) converges much faster than
the deterministic counterpart (“Deterministic”). Similar con-
vergence behavior can be observed in the center and right of
Fig. 1, where the convergence profiles of the objective func-
tion value and the constraint error are plotted, respectively.
The resulting images are depicted in Fig. 2, which illustrates
that our algorithm properly works.

5. CONCLUSION
We have proposed an efficient constrained signal reconstruc-
tion framework based on a stochastic primal-dual splitting al-
gorithm with randomized epigraphical projection. Since the
proposed method does not require the multiplication of full Φ
and variables in each iteration, it would be a powerful choice
when Φ is large and not structured while keeping the benefits
of the constrained formulation.

In this paper, we discuss only the ℓ2 data-fidelity case but
this framework can also be applied to other data fidelity con-
straints, for example, the ℓ1 case, as long as their epigraphical
projections are computable. Also, with a slight extension, our
method would be able to handle signal decomposition mod-
els, such as image decomposition [33, 34].

4996



6. REFERENCES

[1] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in
signal processing,” in Fixed-Point Algorithms for Inverse Problems
in Science and Engineering, H. H. Bauschke et al, Ed., pp. 185–212.
Springer-Verlag, 2011.

[2] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[3] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for
convex problems with applications to imaging,” J. Math. Imaging and
Vision, vol. 40, no. 1, pp. 120–145, 2010.

[4] P. L. Combettes and J.-C. Pesquet, “Primal-dual splitting algorithm
for solving inclusions with mixtures of composite, Lipschitzian, and
parallel-sum type monotone operators,” Set-Valued and Variational
Analysis, vol. 20, no. 2, pp. 307–330, 2012.

[5] L. Condat, “A primal-dual splitting method for convex optimization
involving Lipschitzian, proximable and linear composite terms,” J. Opt.
Theory Appl., vol. 158, no. 2, pp. 460–479, 2013.

[6] B. C. Vu, “A splitting algorithm for dual monotone inclusions involving
cocoercive operators,” Adv. Comput. Math., vol. 38, pp. 667–681, 2013.

[7] N. Komodakis and J.-C. Pesquet, “Playing with Duality: An overview
of recent primal-dual approaches for solving large-scale optimization
problems,” IEEE Signal Process. Magazine, vol. 32, no. 6, pp. 31–54,
2015.

[8] S. Ono, “Primal-dual plug-and-play image restoration,” IEEE Signal
Process. Lett., vol. 24, no. 8, pp. 1108–1112, 2017.

[9] E. Y. Sidky and X. Pan, “Image reconstruction in circular cone-beam
computed tomography by constrained, total-variation minimization,”
Physics in Medicine & Biology, vol. 53, no. 17, pp. 4777, 2008.

[10] X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners
still employ traditional, filtered back-projection for image reconstruc-
tion?,” Inverse problems, vol. 25, no. 12, pp. 123009, 2009.

[11] J.-C. Pesquet and A. Repetti, “A class of randomized primal-dual algo-
rithms for distributed optimization,” J. Nonlin. Convex Anal., vol. 16,
no. 12, pp. 2453–2490, 2015.

[12] Y. Zhang and L. Xiao, “Stochastic primal-dual coordinate method
for regularized empirical risk minimization,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 2939–2980, 2017.

[13] P. L. Combettes and J. Eckstein, “Asynchronous block-iterative primal-
dual decomposition methods for monotone inclusions,” Math. Pro-
gram., vol. 168, no. 1-2, pp. 645–672, 2018.

[14] A. Chambolle, M. J. Ehrhardt, P. Richtárik, and C.-B. Schonlieb,
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