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ABSTRACT

In this paper optimal spectral analysis window shapes, using
weighted discrete prolate spheroidal sequences as basis func-
tions, are proposed. These windows are not typically posi-
tive or even. The windows are time-shifted, combining the
computational efficiency of the Welch method and the ap-
pealing property of predefined frequency resolution of the
Thomson spectral estimator. The parameters of the optimal
windows are found by minimising the resulting spectral co-
variances and optimising the window overlap, for the prede-
termined frequency resolution and number of windows. The
windows are found to have low side lobes, giving small spec-
tral leakage, and the final spectral estimate gives close to opti-
mal variance reduction, i.e. the covariance between different
sub-spectra is very small.

Index Terms— Welch method, Slepian functions, DPSS,
spectral leakage, variance

1. INTRODUCTION

The Welch method [1] is well known and used as spectral es-
timator in many different applications [2, 3, 4]. The spectral
estimate has low variance as the time-shifted windows result
in almost orthogonal sub-spectra that are averaged for the fi-
nal estimate. Partly overlapping and smooth windows, such
as the commonly used Hanning window, are more beneficial
than non-overlapping rectangular windows [5, 6]. From fre-
quency resolution and leakage viewpoint, different window
shapes have been thoroughly investigated and compared [7, 8]
and for a predefined frequency resolution, the discrete pro-
late spheroidal sequences (DPSS) are the most optimal from
leakage viewpoint [9]. Multitaper estimators [10], which uses
all data samples (100% overlap) for all the windowed peri-
odograms, are also popular choices for spectral estimation.
The properties of the different windows give uncorrelated pe-
riodograms and thereby reduced variance.

Optimising variance, resolution and leakage is often of
great interest, where window shapes with certain properties
are chosen followed by optimisation of the overlap and min-
imising the overall variance [11, 12]. It has been shown that
the Thomson multitaper estimator, based on the DPSS, out-
performs the Welch method in terms of bias and variance
[13]. However, the Welch method is more efficient in real-

time applications, with less computations and less memory
allocation, as the windowed sequences require shorter dis-
crete Fourier transforms and less storage [11]. The appealing
Thomson multitaper property of predefined resolution was
used to optimise a time-shifted window shape of the Welch
estimator in [14], but the resulting windows did not fulfil the
property of window orthogonality and well suppressed side
lobes.

This paper proposes using the DPSS as basis functions to
estimate an optimal analysis window shape for a predefined
frequency resolution and a fixed number of time-shifted win-
dows. The window shape is optimal in the sense that it min-
imises the variance of white Gaussian noise, under the con-
straint of well suppressed side lobes, i.e. low spectral leak-
age. A procedure to find the optimal overlap and correspond-
ing window shapes is also proposed. The windows are not
restricted to be positive or even.

2. THOMSON ESTIMATOR WITH WELCH
WINDOW STRUCTURE

Given the discrete-time zero-mean stationary stochastic pro-
cess, x(n), with spectral density, Sx(f), the spectrum can be
estimated from the N samples x = [x(0) . . . x(N − 1)]T ,
(T denotes transpose), using the Welch method

Ŝx(f) =
1

K

K∑
k=1

∣∣∣∣∣∣
Ng−1∑
n=0

x(n+ (k − 1)L)g(n)e−i2πfn

∣∣∣∣∣∣
2

,

(1)
where K is the number of windows, L is the time-shift in
samples, g = [g(0) . . . g(Ng − 1)]T is the window function
and the length of the window is the largest integer Ng ≤ N −
L(K− 1). Another way of estimating the spectrum is instead
to consider the set of time-shifted windows

hk = [0 . . . 0︸ ︷︷ ︸
(k−1)L

g

N−((k−1)L+Ng)︷ ︸︸ ︷
0 . . . 0 ]T , k = 1 . . . K. (2)

These time-shifted windows make it possible to formulate a
Thomson estimator

Ŝx(f) =
1

K

K∑
k=1

∣∣∣∣∣
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x(n)hk(n)e
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. (3)
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Fig. 1. Optimal time-shifted windows hk for the frequency
band B = 0.108, when N = 256 and K = 10; (a) time-
shifted windows using M = 4 DPSS basis functions; (b)
window spectrum of each single window g.

This paper proposes that for some given frequency resolution,
indicated by B, set a number of overlapping windows K, ap-
propriate for the application, and then optimise the shape of
the single window function g and its length Ng to reduce the
(co)variance and leakage.

3. AN OPTIMAL TIME-SHIFTED WINDOW

The approach in this paper is to combine a set of M basis
functions qm = [qm(0) . . . qm(Ng − 1)]T , m = 1 . . .M , to
express the single window

g =

M∑
m=1

αmqm = Qα, (4)

where α = [α1 α2 . . . αM ]T , is the scaling vector and Q =
[q1 q2 . . . qM ] is the matrix including the basis functions as
column vectors.

The DPSS [9] are used as basis functions since they are
all orthogonal and localised to have maximum power inside
a predefined frequency band. The spectral leakage is deter-
mined by the corresponding eigenvalue, thus making it easy
to define a tolerated leakage εT = 1−λi and at the same time
determine the number of basis functions M , i.e. all eigenvec-
tors with corresponding λm ≥ 1− εT , m = 1 . . .M .

The resulting shapes of the windows g are typically not
positive or even. Figure 1(a) shows an example of this when
B = 0.108, N = 256 and K = 10. The windows are a sum
of M = 4 DPSS, the tolerated leakage is εT = 0.0005, the
overlap 70% and α= [0.87 0.28 − 0.17 − 0.36]T . Figure
1(b) shows the spectrum of the window g. The dashed vertical
lines marks the frequency band |f | = B/2 = 0.054, and it
can be noted that for |f | > B/2 the spectrum is very low, the
first side lobe is only -47 dB high.

An optimal spectral estimator should minimise the vari-
ance of a white Gaussian noise process, N(0, 1),

Var Ŝw(f) =
1

K2

K∑
k1=1

K∑
k2=1

|hTk1hk2 |
2, (5)

under the constraint of zero bias,

E[Ŝw(f)] =
1

K

K∑
k=1

hTk hk = 1, (6)

[10]. As the DPSS windows are orthonormal, i.e., QTQ =
I, where I is the identity matrix, the zero bias constraint is
simplified to

E[Ŝw(f)] = gTg = αTQTQα = αTα = 1. (7)

Thus the minimisation problem that needs to be solved is

argmin
|α|2=1

Var Ŝw(f), (8)

which will give the scaling vector α to construct the single
window function g. However, the shape of g is dependent
on the window length, and thus the window overlap, a pro-
cedure to find both the optimal window shape and overlap is
presented next.

3.1. Procedure

This procedure finds the optimal shape of the window g and
the optimal overlap for the set of time-shifted windows hk, as-
suming there is a predetermined frequency band B and num-
ber of windows K.

1. Decide a range of overlaps to be evaluated.

2. Find the number of DPSS basis functions which fulfil
λm ≥ 1− 0.0005, m = 1 . . .M .

3. Solve the minimisation problem (8) for all considered
overlaps and calculate the minimum variances given by
the obtained αs.

4. Find the smallest minimum variance η. Consider all,
though possible just one, of the α that give variances
smaller than η + 0.00052, choose among them the α
that corresponds to the smallest overlap.

5. From the chosen α and corresponding overlap, con-
struct the time-shifted windows hk.

The tolerated leakage

εT = 1− PB = 1−
∫ B/2

−B/2
Sh(f)df ≤ 0.0005, (9)

used in step 2, is chosen as the first sidelobe of the Hanning
window spectrum is found slightly below -30 dB. In step 4 a
deviation from the smallest minimum variance is allowed to
balance the variance minimisation and the increased compu-
tational complexity of larger overlaps.

4984



4. VARIANCE MINIMISATION

When solving the minimisation problem (8) it is of interest
to consider the overlaps of the time-shifted windows. Lets
define the lower and upper parts of the window vector g

glk = [g(kL) . . . g(Ng − 1)]T , (10)
guk

= [g(0) . . . g(Ng − 1− kL)]T . (11)

They can be used to rewrite the expression (5) into

minVar Ŝw(f) =min
1

K
|gTg|2 +

KC∑
k=1

wk|gTlkguk
|2

=minVar0 Ŝw(f) + Cov Ŝw(f),

(12)

where the number of different overlaps is KC < Ng/L < K

and wk = 2 (K−k)
K2 . However, the first term Var0 is always

1/K as |gTg|2 = 1, therefore only the covariance terms
needs to be minimised. Using that

glk = Qlkα, (13)
guk

= Quk
α, (14)

where Qlk and Quk
are the corresponding lower and upper

part of the DPSS basis functions matrix Q respectively, the
minimisation problem (8) can then be reformulated as

argmin
|α|2=1

Var Ŝw(f) = argmin
|α|2=1

KC∑
k=1

wk|αTQT
lk
Quk

α|2.

(15)
The DPSS are either even or odd sequences, qm(Ng−1−n) =
(−1)(m−1)qm(n) [9], giving the following relationship

Qlk = IpQuk
Ics, (16)

where Ics is the (M × M) diagonal signature matrix with
elements (−1)(m−1), and Ip is the (Ng − 1 − |kL| × Ng −
1− |kL|) diagonal exchange matrix. Thus the product

Ak = QT
lk
Quk

= IcsQ
T
uk
IpQuk

(17)

is a (M×M) non-symmetric matrix. The minimisation prob-
lem can be solved using iterative optimisation methods for
non-linear problems, but since the problem is non-convex,
these methods can be costly. However, both M and KC are
assumed to always be rather small, which still make these op-
timisation methods a valid choice. The time-shifted windows
resulting from solving (15) will be referred to as the iterative
optimal time-shifted windows (I-OTSW).

4.1. Approximation

In order to achieve more computational efficiency a simpli-
fication of the minimisation problem (15) with an analytical
solution is also proposed. The time-shifted windows resulting

from solving this problem will be called the approximative
optimal time-shifted windows (A-OTSW).

The original minimisation problem is a sum of non-
negative numbers

minVar Ŝw(f) = argmin
|α|2=1

Kc∑
k=1

wk|αTAkα|2

=argmin
|α|2=1

Kc∑
k=1

wkα
TAkααTAT

kα,

(18)

and a reasonable simplification is to instead consider the
much simpler, although similar problem

argmin
|α|2=1

Kc∑
k=1

wkα
TAkA

T
kα. (19)

This is also a sum of non-negative numbers, since the matrix
product AkA

T
k is Hermitian and positive semi-definite. The

solution to this new problem is found by finding the right-
singular vector of the (KcM ×M) block matrix w1A1A

T
1

...
wKcAKcA

T
Kc

 , (20)

corresponding to the smallest singular value.
At first glance it might seem tempting to first minimise

the problem in (19) to get a solution α0, and then use that to
solve argmin|α|2=1

∑Kc

k=1 wkα
TAkα0α

T
0 A

T
kα. However,

since α0 is a singular vector of the block matrix (20), the
rank of the new block matrix, with rows wkAkα0α

T
0 A

T
k , is

reduced and the solution will always be α = α1 = 1.

5. EVALUATION

The proposed I-OTSW and A-OTSW estimators are evalu-
ated with the usual Hanning window (Welch) and the first
DPSS window (STSW) as Welch estimators and also to the
Thomson multitaper estimator (Thomson). All windows are
optimised or normalised to fulfil the zero bias condition (7).
The evaluation is done for N = 256 and a range of differ-
ent frequency bands according to Table 1 and overlap be-
tween 30% - 75%, for the I-OTSW, A-OTSW and STSW. The
Nelder-Mead simplex method of Matlab (fminsearch) with a

Table 1. Range of frequency bands and corresponding num-
ber of windows for the I-OTSW and A-OTSW estimators.

B K

[0.040, 0.052] 4
[0.056, 0.072] 6
[0.076, 0.088] 8
[0.092, 0.108] 10
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Fig. 2. Evaluation results for N = 256, different frequency
bands B and corresponding K according to Table 1; (a) min-
imum covariances; (b) spectral leakage in dB; (c) optimal
overlap; (d) number of DPSS basis functions.

set of random initial values is used for the I-OTSW estimator.
The iterative search is repeated for reliable convergence. The
Welch estimator is used with 50% overlap and the Thomson
estimator with NB − 3 multitapers [10].

The results of the evaluation are shown in Figure 2, (a)
shows the minimum covariances for the STSW, I-OTSW and
A-OTSW estimators, which shows how close to the smallest
possible variance 1/K the methods reach. The covariances
for the Welch estimator are much larger than for the other
methods, around 0.01 for all K. The Thomson estimator has
covariance zero, however the minimum covariances for the I-
OTSW and A-OTSW estimators are consistently very low and
close to zero. Figure 2 (b) shows that the leakage is low for
both the I-OTSW and A-OTSW estimators, often under -40
dB, and (c) shows that the overlap is mostly 55% for the A-
OTSW and slightly higher for the I-OTSW. This means that
most often KC = 2 and KC ≤ 4, indicating low complexity
computations. In Figure 2 (d) it can be seen that for the I-

Fig. 3. Example of spectral estimates of low-pass filtered
white Gaussian noise with cut-off frequency f = 0.2.

OTSW and A-OTSW estimators most often M = 2, 3, also
indicating low complexity calculations, this is compared to
the Thomson estimator that uses 7− 25 basis functions.

5.1. Low-pass filtered noise example

Low-pass filtered white Gaussian noise, N(0, 1), is used to
visualise the performance of the estimators on spectra with
large dynamics. The spectral estimations of a filtered noise
realisation, cut-off frequency f = 0.2 and N = 256, are
shown in Figure 3. It can be seen that, the Welch estimator has
the most narrow main lobe, with the I-OTSW, A-OTSW and
STSW estimators almost as narrow. However, the I-OTSW,
A-OTSW and Thomson estimators have the lowest first side
lobes. In this example B = 0.04, K = 4 and the optimal
overlaps presented in Figure 2 (c) are used.

6. CONCLUSION

Two methods, I-OTSW and A-OTSW, for finding the optimal
shape of a time-shifted window have been presented. The
window function, typically not positive or even, is a weighted
sum of the DPSS, where the number of basis functions is de-
termined by a tolerated leakage and the weights are optimised
to minimise the variance of a white Gaussian noise process.
Using a novel procedure to determine the optimal overlap of
the time-shifted windows, the resulting optimal spectral esti-
mators are shown to give close to optimal variance reduction
and low leakage, (side lobes -40 dB). Both methods outper-
form the usual Welch method, using common windows, with
regards to variance and leakage. Since the methods use few
DPSS, low overlap and time-shifted windows, they are more
computationally efficient than the Thomson estimator. The
methods however still have the appealing quality of a pre-
determined frequency resolution, usually associated with the
Thomson estimator. It is also shown that the two novel meth-
ods perform very similar to each other, making the simplified
A-OTSW estimator highly beneficial.
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[3] K. Barbé, R. Pintelon, and J. Schoukens, “Welch
method revisited: Nonparametric power spectrum esti-
mation via circular overlap,” IEEE Transations on Sig-
nal Processing, vol. 58, no. 2, pp. 553–565, Sept 2010.

[4] F. Attivissimo, M. Savino, and A. Trotta, “Power spec-
tral density estimation via overlapping nonlinear averag-
ing.,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 50, no. 5, pp. 1418 – 1424, 2001.

[5] G. C. Carter and A. H. Nuttall, “On the weighted over-
lapped segment averaging method for power spectral es-
timation,” Proc. of the IEEE, vol. 68, no. 10, pp. 1352–
1354, Oct 1980.

[6] A. H. Nuttall and G. C. Carter, “A generalized frame-
work for power spectral estimation,” IEEE Trans. on
ASSP, vol. ASSP-28, no. 3, pp. 334–335, June 1980.

[7] A. H. Nuttall, “Some windows with very good sidelobe
behavior,” IEEE Trans. on ASSP, vol. ASSP-29, no. 1,
pp. 84–91, Feb 1981.

[8] F. J. Harris, “On the use of windows for harmonic anal-
ysis with the discrete Fourier transform,” Proc. of the
IEEE, vol. 66, no. 1, pp. 51–83, Jan 1978.

[9] D. Slepian, “Prolate spheroidal wave functions, Fourier
analysis and uncertainty-V: The discrete case,” Bell Sys-
tem Journal, vol. 57, no. 5, pp. 1371–1430, May-June
1978.

[10] D. J. Thomson, “Spectrum estimation and harmonic
analysis,” Proc. of the IEEE, vol. 70, no. 9, pp. 1055–
1096, Sept 1982.

[11] J. Antoni and J. Schoukens, “Optimal settings for
measuring frequency response functions with weighted
overlapped segment averaging,” IEEE Trans. on Instru-
mentation and Measurement, vol. 58, no. 9, pp. 3276–
3287, Sept 2009.

[12] P. A. Treverso P. Magnone and C. Fiegna, “Experimen-
tal technique for the performance evaluation and opti-
mization of 1/f noise spectrum investigation in electron
devices,” Measurement, vol. 98, pp. 421–428, 2017.

[13] T. P. Bronez, “On the performance advantage of mul-
titaper spectral analysis,” IEEE Transactions on Signal
Processing, vol. 40, no. 12, pp. 2941–2946, Dec 1992.

[14] M. Hansson-Sandsten, “A Welch method approxima-
tion of the Thomson multitaper spectrum estimator,” in
European Signal Processing Conference (EUSIPCO),
Bucharest, Romania, 2012.

4987


		2019-03-18T11:09:17-0500
	Preflight Ticket Signature




