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ABSTRACT

In this paper, we present a novel formulation of Approximate
Simultaneous Diagonalization (ASD) with a nonconvex fea-
sibility problem to find a structured low rank matrix whose
building blocks are the Kronecker sums of given multiple
matrices. To tackle this feasibility problem, we propose
an alternating projection algorithm that can generate a matrix
sequence approaching monotonically to a solution. By this al-
gorithm, simultaneously diagonalizable matrices are obtained
in the neighborhood of the given matrices which are not
necessarily diagonalizable simultaneously. By using further
the Diagonalize-One-then-Diagonalize-the-Other (DODO)
method, we can obtain finally a common similarity transfor-
mation which diagonalizes the simultaneously diagonalizable
matrices. Numerical experiments show that, compared with a
Jacobi-like method, the proposed algorithm achieves a better
approximation to the desired common similarity transforma-
tion.

Index Terms— Simultaneous diagonalization, joint eigen-
value decomposition, alternating projection, nonconvex fea-
sibility problem

1. INTRODUCTION

Exact Simultaneous Diagonalization (exact SD) [1], also
called exact Joint EigenValue Decomposition (exact JEVD) [2,
3], is a problem to find a common similarity transformation,
if exists, which diagonalizes simultaneously given multiple
squared matrices.1 For general matrices which may not have
such a transformation, the goal is replaced by finding a cer-
tain common similarity transformation which diagonalizes
simultaneously diagonalizable matrices (see Definition 1 in
Section 2) in the neighborhood of given matrices. This type
of relaxed problems is often called Approximate Simultane-
ous Diagonalization (ASD) (see, e.g., [4]). ASD has been
a key for many computational strategies in data sciences in-
cluding signal processing and machine learning, e.g., 2-D
DOA estimation [5], joint angle-frequency estimation [6],
multidimensional harmonic retrieval [7], independent com-

1This problem is different from simultaneous diagonalization by congru-
ence (see, e.g., [1]).

ponent analysis [3, 8], canonical polyadic decomposition of
tensors [2, 9, 10], etc.

For ASD, the so-called Jacobi-like methods [2, 3], which
have been used extensively, are iterative algorithms for find-
ing a minimizer in GL(N,C) of the nonconvex function
φ(S) :=

∑K
k=1 off(S

−1AkS), where GL(N,C)(⊂ CN×N )
is the set of all nonsingular matrices, A1, A2, . . . , AK ∈
CN×N are given matrices, and off : X := [xi,j ]

N
i,j=1 7→∑

1≤i̸=j≤N |xi,j |2. Due to the nonconvexity of GL(N,C)
as well as φ, the Jacobi-like methods at each step do not
update N2 variables in S simultaneously, but timidly update
only a single variable in certain parameterized matrices (e.g.,
Givens rotation matrix and shear matrices) to reach a local
minimum of φ. We remark that the Jacobi-like methods do
not exploit inherent algebraic properties of simultaneously
diagonalizable matrices (see, e.g., Fact 1 in Section 2) to be
estimated in ASD, which also suggests the possibility toward
an alternative powerful strategy for ASD if we find some
computational ideas to use such properties.

In this paper, we present a novel formulation of ASD with
a nonconvex feasibility problem to find simultaneously diag-
onalizable matrices, in the neighborhood of given matrices
which are not necessarily diagonalizable simultaneously, fol-
lowed by an algebraic simultaneous diagonalization scheme.
Unlike the Jacobi-like methods, the proposed algorithm can
enjoy effectively a central property, i.e., the pairwise com-
mutativity, of simultaneously diagonalizable matrices. To es-
tablish such a novel formulation of ASD with a nonconvex
feasibility problem, we introduce a structured low rank ma-
trix in CKN2×N2

whose building blocks are the Kronecker
sums of all the given matrices. We also propose an alternating
projection algorithm that can generate a matrix sequence ap-
proaching monotonically to a solution of the feasibility prob-
lem. By this algorithm, simultaneously diagonalizable matri-
ces are obtained in the neighborhood of the given matrices.
By applying further the Diagonalize-One-then-Diagonalize-
the-Other (DODO) method (found in [11]), an algebraic al-
gorithm designed for exact SD, to the simultaneously diago-
nalizable matrices, we can obtain finally a common similarity
transformation which is the goal of ASD. Numerical experi-
ments show that, compared with the Jacobi-like method, the
proposed algorithm achieves a better approximation to the de-
sired common similarity transformation.
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Notations: Let R and C denote the set of the real numbers
and the set of the complex numbers, respectively. Let vec(·) :
CN×N → CN2

denote vectorization by stacking columns of
a matrix, and vec−1(·) its inverse. For a given x ∈ CN2

, ∥x∥
denotes the Euclidean norm of x. Let I ∈ CN×N denote the
N -by-N identity matrix. For a given X ∈ CN×N , X⊤, XH ,
N (X), and ∥X∥F denote its transpose, conjugate transpose,
nullspace, and the Frobenius norm, respectively. The Kro-
necker product of X = [xi,j ] ∈ CN×N and Y ∈ CN×N is
X ⊗Y = [xi,jY ]Ni,j=1 ∈ CN2×N2

. Let C denote the set of all
(X1, X2, . . . , XK) ∈ X := CN×N × · · · ×CN×N satisfying
XiXj = XjXi (∀i, j ∈ {1, 2, . . . ,K}).

2. DECOMPOSITION OF APPROXIMATE
SIMULTANEOUS DIAGONALIZATION

INTO TWO STEPS

Definition 1. Given multiple matrices X1, X2, . . . , XK ∈
CN×N are said to be simultaneously diagonalizable if there
exists a common S ∈ GL(N,C) such that S−1XkS (k =
1, 2, . . . ,K) are diagonal. We will use SD as the set of all
(X1, . . . , XK) ∈ X such that X1, . . . , XK are simultane-
ously diagonalizable.

To establish a powerful numerical algorithm for ASD, we
propose an alternative strategy which consists of the follow-
ing two steps:

Step 1. for a given A := (A1, A2, . . . , AK) ∈ X ,
find (SD ∋)Ã := (Ã1, Ã2, . . . , ÃK) ≈ A;

Step 2. find S̃ ∈ GL(N,C) such that S̃−1ÃkS̃(k = 1, . . . ,K)
are diagonal.

Step 1 is introduced based on the fact that, in most data
science applications of ASD, (A1, . . . , AK) ∈ X are usually
modeled as a slightly perturbed version of simultaneous di-
agonalizable matrices, say (A⋆

1, . . . , A
⋆
K) ∈ SD, and that the

ultimate goal of ASD is to find S⋆ ∈ GL(N,C) such that
S−1
⋆ A⋆

kS⋆(k = 1, . . . ,K) are diagonal, where the essential
uniqueness of S⋆, i.e., S⋆ is determined uniquely up to a per-
mutation and a scaling of its columns, is implicitly assumed.

Despite the nonconvexity of GL(N,C), Step 2 can be
solved algebraically by the DODO method (found in [11], and
also suggested by the constructive proof of Fact 1).2

The following characterization of SD is well-known.

Fact 1 (Neccesary and sufficient condition for simultaneously
diagonalizable matrices [1, Theorem 1.3.21]). For given di-
agonalizable matrices Z1, Z2, . . . , ZK ∈ CN×N ,

Z := (Z1, Z2, . . . , ZK) ∈ C ⇔ Z ∈ SD.

2The two-step strategy was introduced in [12] but with a heuristic algo-
rithm.

3. FORMULATION OF APPROXIMATE
SIMULTANEOUS DIAGONALIZATION

WITH NONCONVEX FEASIBILITY PROBLEM

3.1. Simultaneously Diagonalizability Conditions in terms
of the Kronecker Sums

It is not hard to see that X1 ∈ CN×N and X2 ∈ CN×N

commute if and only if vec(X2) ∈ N (I ⊗ X1 − X⊤
1 ⊗ I),

where I ⊗X1 −X⊤
1 ⊗ I is called the Kronecker sum of X1

and −X⊤
1 . This simple fact motivates us to introduce a linear

map Ξ : X → CKN2×N2

: X := (X1, X2, . . . , XK) 7→

Ξ(X) :=


I ⊗X1 −X⊤

1 ⊗ I
I ⊗X2 −X⊤

2 ⊗ I
...

I ⊗XK −X⊤
K ⊗ I

 ∈ CKN2×N2

. (1)

Moreover, for a given X̂ ∈ Ξ(X ) := {Ξ(Y ) ∈ CKN2×N2 |
Y ∈ X}, we introduce an affine subspace Ξ−1(X̂) := {Y ∈
X | Ξ(Y ) = X̂} ⊂ X .

Lemma 1 (Characterizations of C and SD with Ξ). For a
given Z := (Z1, Z2, . . . , ZK) ∈ X , we have

(a) Z ∈ C ⇔ (∀i ∈ {1, 2, . . . ,K}) Ξ(Z)vec(Zi) = 0;

(b) Z ∈ SD ⇒ rank(Ξ(Z)) ≤ N2 −N,
rank(Ξ(Z)) = N2 −N ⇔

simultaneous diagonalization of Z is ess. unique;

(c) if at least one Zk has N distinct eigenvalues,
Z ∈ SD ⇔ rank(Ξ(Z)) = N2 −N .

(The proof of Lemma 1 is given in Appendix.)

Proposition 1 (Projection onto Ξ−1(X̂)). Let X̂ ∈ Ξ(X ) and
choose X⋄ := (X⋄

1 , . . . , X
⋄
K) ∈ Ξ−1(X̂) arbitrarily. Then,

(a) Ξ−1(X̂) = X⋄ + {(α1I, . . . , αKI) | α1, . . . αK ∈ C};

(b) the projection onto Ξ−1(X̂), i.e., PΞ−1(X̂) : X →
Ξ−1(X̂) : Z := (Z1, . . . , ZK) 7→ Z⋆ :=

(Z⋆
1 , . . . , Z

⋆
K) := argmin

Y =(Y1,...,YK)∈Ξ−1(X̂)

K∑
k=1

∥Zk − Yk∥2F ,

is given by Z⋆
k := X⋄

k +
tr(Zk−X⋄

k)
N I .

Theorem 1 (Formulation of ASD with nonconvex feasibility
problem). Let Ξ(X ) := {Ξ(Y ) ∈ CKN2×N2 | Y ∈ X}
and LN2−N := {Ŷ ∈ CKN2×N2 | rank(Ŷ ) ≤ N2 − N}.
Suppose X̂ ∈ Ξ(X )∩LN2−N and Ξ(Z) = X̂ for some Z :=
(Z1, . . . , ZK) ∈ X , where Z1 has N distinct eigenvalues and
is diagonalizable by S ∈ GL(N,C) as Z1 = SΛ1S

−1. Then,
Z ∈ SD and S−1ZkS (k = 2, . . . ,K) are diagonal.
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(The proof of Theorem 1 is given in Appendix.)
Theorem 1 induces us to propose the following computa-

tional strategy for Step 1 in Section 2.
Proposed Computational Strategy for Step 1� �

Step 1a. find (Ξ(X ) ∩ LN2−N ∋)Â ≈ Ξ(A);

Step 1b. compute Ã := PΞ−1(Â)(A).� �
Remark 1 (On the strategy for Step 1).

(a) Ã = (Ã1, . . . , ÃK) is expected to be close to A be-
cause Ã is the best approximation, of A, in Ξ−1(Â)

with Â ≈ Ξ(A). Moreover, with high probability, Ã
is expected to have some Ãk of N distinct eigenvalues
because of the implicit model assumption of A and [9,
Theorem 6.1].

(b) The proposed computational strategy exploits an alge-
braic property, i.e., the pairwise commutativity, of si-
multaneously diagonalizable matrices. Using such a
property aims to achieve a denoising effect in Step 1.
The effectiveness of using the pairwise commutativity
condition, for denoising in ASD, was suggested in [5]
but only for K = 2.

3.2. Approximate Simultaneous Diagonalization Algo-
rithm by Alternating Projection

We have already shown how to compute Step 1b in Proposi-
tion 1(b). To realize Step 1a, we propose to use an alternating
projection algorithm below:

Â(0) := Ξ(A)

Â(t+ 1) := PΞ(X ) ◦PLN2−N
(Â(t)) (t = 0, 1, . . .)

}
, (2)

where, for any X̂ ∈ CKN2×N2

,

PLN2−N
(X̂) ∈ argmin

Ŷ ∈LN2−N

∥X̂ − Ŷ ∥F

PΞ(X )(X̂) := argmin
Ŷ ∈Ξ(X )

∥X̂ − Ŷ ∥F

 . (3)

Proposition 2 (Monotone approximation property of alter-
nating projection). Let (Â(t))∞t=0 be the sequence generated
by (2). Then, the sequence (Ã(t))∞t=0 defined by Ã(t) :=

PΞ−1(Â(t))(A) ∈ X satisfies Ξ(Ã(t)) = Â(t) ∈ Ξ(X ) (t =

0, 1, . . .) and

∥Ξ(Ã(t+ 1))− PLN2−N
(Ξ(Ã(t+ 1)))∥F

≤ ∥Ξ(Ã(t))− PLN2−N
(Ξ(Ã(t)))∥F (t = 0, 1, . . .).

Remark 2 (On the proposed alternating projection).

Algorithm 1 (ASD of A by alternating projection)

1: Initialize Â(0) = Ξ(A) and t = 0;
2: while ∥Â(t)− PLN2−N

(Â(t))∥F > ε do
3: Â(t+ 1) = PΞ(X ) ◦ PLN2−N

(Â(t));
4: t = t+ 1;
5: end while
6: Ã := PΞ−1(Â(t))(A);

7: Apply the DODO method to Ã;

(a) The projection PLN2−N
: CKN2×N2 → LN2−N in (3)

can be computed with the truncated singular value de-
composition (see the Schmidt approximation theorem,
e.g., in [13]). Note that PLN2−N

in (3) is determined
uniquely except in a very special case where the (N2−
N)-th and (N2 −N + 1)-st singular values of X̂ hap-
pen to coincide [13].

(b) The projection PΞ(X ) : CKN2×N2 → Ξ(X ) : X̂ :=

[X̂⊤
1 , . . . , X̂⊤

K ]⊤ 7→ Ẑ := [Ẑ⊤
1 , . . . , Ẑ⊤

K ]⊤ (X̂k, Ẑk ∈
CN2×N2

, k = 1, . . . ,K) in (3) can be computed
by assigning the orthogonal projection of X̂k (k =
1, . . . ,K), onto span{I ⊗ E(i, j) − E(i, j)⊤ ⊗ I |
(i, j) ∈ ({1, . . . , N} × {1, . . . , N}) \ {(N,N)}}, to
Ẑk, where E(i, j) = [e

(i,j)
l,m ] ∈ CN×N is given by

e
(i,j)
l,m :=

{
1 if (l,m) = (i, j);
0 otherwise.

(c) The method of alternating projections is a powerful tool
to solve feasibility problems. Even for nonconvex feasi-
bility problems, alternating projection has a guarantee
to converge locally [14, 15] to a point in the intersec-
tion and has been used extensively for finding a point,
near the initial guess, in the intersection, e.g., phase
retrieval [16] and Structured Low Rank Approxima-
tion (SLRA) [17,18] (The problem in Step 1a in Section
3.1 can be seen as an instance of SLRA).

Now, the proposed overall algorithm for ASD is given in
Algorithm 1.

4. NUMERICAL EXPERIMENTS

We examine the effectiveness of the proposed algorithm. Let
A = (A1, . . . , AK) ∈ X be given by

Ak :=
S⋆ΛkS

−1
⋆

∥S⋆ΛkS
−1
⋆ ∥F

+ σ
Ek

∥Ek∥F
∈ RN×N (k = 1, . . . ,K),

where the entries of S⋆ ∈ GL(N,R), a diagonal Λk, and
an additive noise Ek ∈ RN×N are drawn from a standard
normal distribution, and the Signal to Noise Ratio (SNR) is
defined as −20 log10(σ). We compare the proposed algo-
rithm (Algorithm 1) and JDTM [2]. We choose ε = 10−4
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Fig. 1: Average of (∥Â(t)− PLN2−N
(Â(t))∥F )200t=0 over 100

trials.

in Algorithm 1. All the algorithms are terminated when they
have reached 200 iterations. Figure 1 shows that (∥Â(t) −
PLN2−N

(Â(t))∥F )∞t=0 of Algorithm 1 decreases monotoni-
cally in all SNR settings, which is guaranteed by Proposi-
tion 2. Figure 2(a) illustrates that Algorithm 1 computes Ã ∈
SD closer to A than JDTM does.3Figure 2(b) shows that Al-
gorithm 1 achieves significantly better approximation to S⋆

than JDTM in the case where (SNR)≥ 5.

5. APPENDIX

Proof of Lemma 1:

(a) This follows from the expression of the condition
ZiZj − ZjZi = O (i, j = 1, . . . ,K) in vector form.

(b) Let Zk = SΛkS
−1, where Λk ∈ CN×N is a diagonal

matrix (k = 1, 2, . . .K). By using identities: (A ⊗
B)(C ⊗D) = AC ⊗BD (A,B,C,D ∈ CN×N ) [19,
Lemma 4.2.10] and (A⊗B)−1 = A−1⊗B−1 (A,B ∈
GL(N,C)) [19, Collorary 4.2.11], we get I ⊗ Zk −
Z⊤
k ⊗ I = (S−⊤⊗S)(I⊗Λk−Λk⊗ I)(S−⊤⊗S)−1.

By using [19, Corollary 4.4.15], we see rank(I⊗Zk −
Z⊤
k ⊗ I) = rank(I ⊗ Λk − Λk ⊗ I) ≤ N2 − N .

Moreover, Ξ(Z) = (IK ⊗ (S−⊤ ⊗ S))Ξ(Λ)(S−⊤ ⊗
S)−1, where IK ∈ CK×K denotes the identity matrix
and Λ := (Λ1, . . . ,ΛK) ∈ X . Now, by noting that
Ξ(Λ) has at least N zero column vectors, we deduce
rank(Ξ(Z)) = rank(Ξ(Λ)) ≤ N2 − N . Finally, the
remaining equivalence is verified by [9, Theorem 6.1].

(c) Suppose that Z1 has N distinct eigenvalues. Therefore,
there is S ∈ GL(N,C) and a diagonal matrix Λ1 ∈
CN×N such that Z1 = SΛ1S

−1.

3In JDTM, we employ Ãk := S̃JDkS̃
−1
J , where S̃J ∈ GL(N,C) is an

approximation of S⋆ computed by JDTM and Dk ∈ CN×N is a diagonal
matrix of common diagonal entries with S̃−1

J AkS̃J .
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(b) Median of normalized squared error for S⋆ over 100 trials.

Fig. 2: Comparison of JDTM [2] and the proposed algo-
rithm (Algorithm 1) on tasks in Step 1 in Section 2 and ASD.

(Proof of ”⇒”) [19, Corollary 4.4.18] ensures that
Zk (k = 2, . . . ,K) is a certain polynomial in Z1.
Moreover, [19, Corollary 4.4.15] ensures dim(N (I ⊗
Z1 − Z⊤

1 ⊗ I)) = N . Since N (I ⊗ Z1 − Z⊤
1 ⊗ I) ⊆

N (I ⊗ Zk − Z⊤
k ⊗ I) for any k ∈ {2, . . . ,K},

N (Ξ(Z)) = N (I ⊗ Z1 − Z⊤
1 ⊗ I). Therefore,

rank(Ξ(Z)) = N2 − dim(N (Ξ(Z))) = N2 − N .
(Proof of ”⇐”) By [19, Collorary 4.4.15], dim(N (I ⊗
Z1−Z⊤

1 ⊗I)) = N . Therefore, N (I⊗Zk−Z⊤
k ⊗I) ⊇

N (Ξ(Z)) = N (I ⊗ Z1 − Z⊤
1 ⊗ I) ∋ vec(Z1) for any

k ∈ {2, . . . ,K}, which ensures the commutativity of
Z1 and Zk. By using again [19, Collorary 4.4.18], we
see that Zk is a certain polynomial in Z1. Therefore,
S−1ZkS (k = 2, . . . ,K) are diagonal.

Proof of Theorem 1:
From Lemma 1 (c), it is sufficient to show rank(Ξ(Z)) =
N2 −N . Since Z1 has N distinct eigenvalues, [19, Collorary
4.4.15] and Ξ(Z) ∈ LN2−N ensure N2 − N = rank(I ⊗
Z1 − Z⊤

1 ⊗ I) ≤ rank(Ξ(Z)) ≤ N2 −N .
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