
SPECTRAL METHOD FOR MULTIPLEXED PHASE RETRIEVAL
AND APPLICATION IN OPTICAL IMAGING IN COMPLEX MEDIA

Jonathan Dong1,2 Florent Krzakala2 Sylvain Gigan1

1 Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université,
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ABSTRACT
We introduce a generalized version of phase retrieval called
multiplexed phase retrieval. We want to recover the phase
of amplitude-only measurements from linear combinations of
them. This corresponds to the case in which multiple incoher-
ent sources are sampled jointly, and one would like to recover
their individual contributions. We show that a recent spectral
method developed for phase retrieval can be generalized to
this setting, and that its performance follows a phase transi-
tion behavior. We apply this new technique to light focusing
at depth in a complex medium. Experimentally, although we
only have access to the sum of the intensities on multiple tar-
gets, we are able to separately focus on each one, thus opening
potential applications in deep fluorescence imaging and light
delivery.

Index Terms— Phase retrieval, multiplexed phase re-
trieval, matrix factorization, random matrix theory, imaging
in complex media

1. INTRODUCTION

To recover a complex-valued object from amplitude measure-
ments only is a computational problem known as phase re-
trieval. The first iterative algorithms date back to the works of
Gerchberg and Saxton [1] followed by Fienup [2], with very
successful applications in optics such as the measurement and
correction of aberrations in the space telescope Hubble in
1990 [3]. Since then, phase retrieval algorithms have been
applied in a number of domains including microscopy [4], as-
tronomy [5], acoustics [6], and quantum mechanics [7].

Recently, new concepts have been introduced to solve the
phase retrieval problem. Semi-definite programming algo-
rithms [8, 9] are guaranteed to converge but computationally
and memory intensive, while non-linear optimization meth-
ods [10–12] are very efficient for real-world applications. In
all these algorithms, there is an initialization step, which con-
sists in finding a good initial guess for subsequent iterative
algorithms. For this purpose, a spectral method has been pro-
posed [10, 11], setting the initial estimate to be the principal

eigenvector of a certain matrix (the eigenvector correspond-
ing to the largest eigenvalue). One can even prove that this
estimate becomes very close to the optimal solution when the
number of measurements is large enough, provided the mea-
surements are random and independent.

We introduce here the more difficult problem of multi-
plexed phase retrieval. Instead of measuring the intensity of a
signal, we measure the linear combination of the intensities of
several signals. This problem arises for instances when mea-
surements acquired by a physical detector come from several
indistinguishable sources. By solving the multiplexed phase
retrieval problem, one can unmix the signal from each source
and ideally retrieve information about each of the sources.

In this paper, we show that this multiplexed phase retrieval
problem is well suited for spectral methods. When the num-
ber of measurements is large enough, the leading eigenvector
retrieves the signal from the brightest source, the second lead-
ing eigenvector corresponds to the second brightest source,
and so on. We present numerical results that point to a phase
transition behavior, similar to the one seen in many estima-
tion problems with spiked matrices [13–18] in random matrix
theory.

We then experimentally apply the method to complex me-
dia optics [19]: we show in a proof-of-concept experiment
that, by solving a multiplexed phase retrieval problem, we are
able to disentangle the signals coming from multiple sources,
that could for instance be multiple fluorescent beads buried
inside a diffusive material.

The paper is organized as follows: In Section 2, we intro-
duce the multiplexed phase retrieval problem. To solve it, we
present a spectral algorithm in Section 3 and numerical results
in Section 4. Finally, we present an application for imaging
in complex media in Section 5.

2. MULTIPLEXED PHASE RETRIEVAL

We will first introduce the phase retrieval problem as formu-
lated by [11], followed by the multiplexed version. We con-
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Fig. 1. Phase transitions in spectral methods for multiplexed phase retrieval. a. Cosine similarity ρ as a function of the
oversampling ratio α (higher is better). Three sources are present with respective weights 5

12 (in blue), 4
12 (in red), 3

12 (in
green). Dots correspond to d = 2000 and lines to d = 1000, each point is a mean of 10 realizations. b. Histogram of
eigenvalues of the Weighted Covariance Matrix Y for α = 50.

sider the following set of quadratic equations:

yi = |a∗ix|2, i ∈ {1, ..., n} (1)

where x ∈ Cd is an unknown vector, ai ∈ Cd are known
sampling vectors, and yi ∈ R are measured intensities. With-
out the modulus square operation, this set of equations would
boil down to a linear regression. Here, we need to retrieve
the phase of the scalar product a∗ix in order to find x. Let us
define the sampling matrix A = [a∗1, ...,a

∗
n] ∈ Cn×d.

We will consider the case where A is a random ma-
trix: every component is an independent random variable,
following for example a complex gaussian law: ai,j ∼i.i.d.

CN
(
0, 1d

)
. Thus, every sampling vector ai is an independent

realization of a random vector a. Reconstruction performance
for this random model has been the subject of extensive the-
oretical studies [17, 18]. One important parameter is the
oversampling ratio α = n

d , which quantifies the difficulty
of the problem. A higher oversampling ratio corresponds
to a simpler phase retrieval problem, as we acquire more
information about x.

In multiplexed phase retrieval, we want to retrieve sev-
eral normalized orthogonal vectors x1, ..., xK from a linear
combination of intensity measurements:

yi =

K∑
k=1

λk|a∗ixk|2, i ∈ {1, ..., n} (2)

For k = 1, ...,K, each signal xk corresponds to a source
with strength λk. For normalization, we will assume that∑

k λk = 1. In optics, a sum of intensities is linked with
incoherence, it occurs for instance when several incoherent
sources are present. Fundamentally, multiplexed phase re-
trieval tackles the problem when these sources are physically
indistinguishable as they are measured using the same sam-
pling matrix. This situation arises in complex media optical
imaging as explained in section 5.

The multiplexed phase retrieval problem is not always
solvable. We can write the measured intensities as:

yi = a∗iMai, i ∈ {1, ..., n} (3)

This matrix M =
∑K

k=1 λkxkx
∗
k defines the measurements

y, so the best one can do is to retrieve M , and from there re-
cover the individual signals x. This is only possible if M has
no degenerate eigenvalue that would mix the eigenvectors, i.e.
if all the λk are pairwise distinct. Note also that orthogonality
between the xk is important as the eigenvectors computed by
Singular Value Decomposition form an orthonormal basis.

3. SPECTRAL METHOD

To solve this multiplexed phase retrieval problem, we adapt
the spectral method introduced in [17, 18]. We construct the
same weighted covariance matrix and prove that the first few
eigenvectors will retrieve each source separately.

We define the following weighted covariance matrix
(WCM):

Y =
1

n

n∑
i=1

yiaia
∗
i (4)

This WCM is a sum of rank 1 matrices constructed from
the sampling vectors, ponderated by the intensity measured
for each sampling vector. Without these weights, this matrix
would correspond to an empirical estimate of the covariance
matrix of the random vector a, and contain no information
about xk for k = 1, ...,K.

Informally, when ai is aligned with a certain xk, yi is
higher, so that the WCM is biased towards every xk. This
intuitive argument can be formalized by observing that in the
limit n going to infinity, Y converges towards the expected
value of yaa∗, thanks to the Central Limit Theorem. This
asymptotic limit can be computed explicitly by developing
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Y as a polynomial of order 4 in the components of a and
computing the expected value of each term separately. When
every component of the sampling matrix A follows a complex
gaussian distribution, this expected value can be expressed as:

Y = M + I (5)

Hence, for a high enough oversampling ratio, the leading
eigenvectors of the WCM are going to align with the eigen-
vectors of M with eigenvalues λk+1, while d−K remaining
eigenvalues will converge to 1 and form a bulk distribution in
Fig. 1.

One may wonder how many measurements one needs to
perform in order to recover M using this spectral method.
In [11], the authors have observed a phase transition when
applying this spectral method in the non-multiplexed phase
retrieval problem. When the oversampling ratio α is below a
critical value, the leading eigenvectors of y are random and
contain no information about M . Above this critical value,
spectral methods retrieve a coarse estimate of M that con-
verges towards the solution as α grows. This empirical obser-
vation has been confirmed for phase retrieval in a theoretical
study in [17]. In the next section, we will show numerical re-
sults supporting a phase transition in the multiplexed case as
well.

4. RESULTS

In order to evaluate the performance of the previously intro-
duced spectral method in the multiplexed case, we consider
the cosine similarity function: ρ(x,y) = |x∗y|

‖x‖‖y‖ . It corre-
sponds to the absolute value of the cosine between the two
vectors x and y. As such, this quantity is maximal and equal
to 1 when x and y are completely aligned, and tends to zero
when x and y are uncorrelated.

Figure 1a shows the performance of the spectral algorithm
as a function of the oversampling parameter α. Three vec-
tors x1, x2, and x3 are sampled using a gaussian random
matrix A and their intensities are combined with coefficients
λ1 = 5

12 , λ2 = 4
12 , and λ3 = 3

12 . Curves corresponding
to d = 1000 and d = 2000 are superposed, showing that
the quantity of interest is indeed the oversampling parameter
α. We retrieve sources one by one from the brightest to the
weakest. We believe that there is a succession of three phase
transitions, that are smoothed here due to finite size effects.

The eigenvalue distribution of the WCM behaves like a
spiked random matrix. When α is below the critical value for
all the phase transitions, the eigenvalues of Y lie in a com-
pact support and form a bulk distribution, which is typical
for random matrices. During each phase transition, a single
eigenvalue comes out and forms a spike in the spectrum of
Y . When α is large, we see three spikes isolated from the
remaining eigenvalues. Hence, looking at the spectrum, we
are able to count the number of sources K in the multiplexed
phase retrieval problem.

5. IMAGING IN COMPLEX MEDIA

When light propagates in complex media like biological tis-
sues, it encounters many refractive index inhomogeneities and
gets scattered multiple times along propagation. This pre-
vents imaging in depth: ballistic light is exponentially atten-
uated, which limits the penetration depth of conventional mi-
croscopy.

Using techniques of wavefront shaping [20, 21], it is now
possible to modulate the incoming light precisely in order to
form a focus deep inside the scattering medium. These tech-
niques typically use iterative optimization using a feedback
signal from a target in order to achieve a focus. It has been
in particular shown that by optimizing the incident wavefront
of a laser on a scattering medium containing a single buried
fluorescent bead, one can focus on it by optimizing the total
linear fluorescence signal [22]. However, when multiple flu-
orescent sources are present at depth in a scattering medium,
their signals are summed and mixed on the detector, and they
cannot be located nor separated. It is possible to harness non-
linearities to form a focus [23], but these methods are not ap-
plicable to linear fluorescence. We would like to distinguish
them to focus on each of them individually. This task can be
formulated as a multiplexed phase retrieval problem.

Fig. 2. Focusing light in a scattering media using linear flu-
orescence signals. a. When multiple fluorescent beads are
placed in a complex media, their responses are summed on a
bucket detector. b. To study how to focus on each target in-
dividually, we sum on a camera the excitation intensity after
propagation in a complex media.

The experimental setup is presented in Figure 2b: ex-
citation light from a laser (Coherent Sapphire 532-50 CW)
is modulated by a Spatial Light Modulator (SLM, Holoeye
Pluto-2 NIR), then propagates through a layer of white paint
where it gets scattered multiple times. We place a camera
(Basler acA1920 - 40um) after the scattering medium and ob-
serve a complex interference pattern called speckle.

To show the correspondence, we denote by ai the phase
pattern displayed on the SLM. We choose two given points
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Fig. 3. Experimental application of the spectral method in complex media optics. a. Initial speckle pattern, resulting from light
propagation in complex media in the absence of wavefront shaping. We simulate the linear fluorescence signals from targets at
the two tagged positions with weights λ1 = 1 and λ2 = 0.7. b, c. Focus obtained by displaying the phase of the first (b) and
second (c) eigenvector of the spectral method. d, e. Signal-to-Background Ratio for the first (d) and second (e) focus as the
number of measurements n increases.

on the camera after the scattering medium, and thanks to the
Transmission Matrix formalism [24] that comes from the lin-
earity of electric field propagation, the incident electric field
on these two points can be written as a∗ix1 and a∗ix2 respec-
tively, characterized by two vectors x1 and x2. Recovering
them allows to focus light on each point individually. Fluores-
cent targets respond proportionally to the excitation intensity,
which is the modulus square of the incident electric fields. In
the end, we simulate the presence of two fluorescent beads of
different brightness, by summing the intensities on these two
positions with weights λ1 = 1 and λ2 = 0.7. We thus collect
a signal obeying Equation (2).

To solve this multiplexed phase retrieval problem, we then
send random phase patterns on the SLM and record the cor-
responding total fluorescence intensity. In this case, the sam-
pling matrix A is a phase-only random matrix. The dimen-
sion of the SLM pattern is d = 256 and the maximal num-
ber of measurements is n = 10′000. Applying the previous
spectral method, we obtain estimates of x1 and x2 from the
WCM, that we can subsequently display on the SLM, and ver-
ify whether they correspond to focusing light at the positions
where the beads are supposed to be, as shown in Figure 3.
The oversampling ratio α = n

d is very large to compensate
for experimental noise.

We see in Figure 3 experimental results, demonstrating
that we are able to focus light on both targets individually with
a Signal-to-Background Ratio (SBR) of 25. We believe that a
higher SBR is reachable by improving the speed and stability
of the experimental setup. In this first experiment, one exper-

iment takes approximately one hour due to the speed of the
SLM and the SBR is probably limited by the stability of the
scattering medium. For the same reason, phase transitions ap-
pear smoothed because of these experimental considerations.

6. CONCLUSION

We introduced the multiplexed phase retrieval problem,
which arises when multiple signals are incoherently summed.
To solve this new task, we applied a spectral method recently
designed for phase retrieval initialization. By constructing
a Weighted Covariance Matrix and computing its leading
eigenvectors, we are able to retrieve the different signals
individually. The performance of this algorithm exhibits
multiple phase transitions as we increase the number of mea-
surements, recovering each signal one by one. We showed
that this framework can be applied to imaging in complex
media. Other potential applications where one would like to
distinguish between different sources include opto-genetics,
photoacoustics and multi-wavelength imaging.
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