
SMOOTH SIGNAL RECOVERY ON PRODUCT GRAPHS

Rohan Varma†, Jelena Kovačević∗

†Dept. of Electrical and Computer Engineering, Carnegie Mellon University
∗Tandon School of Engineering, New York University

ABSTRACT

Product graphs are a useful way to model richer forms of graph-
structured data that can be multi-modal in nature. In this work, we
study the reconstruction or estimation of smooth signals on product
graphs from noisy measurements. We motivate and present represen-
tations and algorithms that exploit the inherent structure in product
graphs for better and more computationally efficient recovery. These
contributions stem from the key insight that smooth graph signals on
product graphs can be structured as low-rank tensors. We develop
and present algorithms primarily based on two approaches, the first
of which is the Tucker decomposition for tensors, while the second is
a flexible convex optimization formulation. We further present nu-
merical experiments that exhibit the superior performance of these
methods with respect to existing methods for smooth signal recov-
ery on graphs.

Index Terms— graph signal, smooth, recovery, reconstruction,
tensor decomposition, low-rank

1. INTRODUCTION

Signal estimation from noisy observations is a well-studied problem
in signal processing and has applications for signal inpainting, col-
laborative filtering, recommender systems and other large-scale data
completion problems. Since noise can have deleterious, cascading
effects in many downstream tasks, being able to efficiently and ac-
curately reconstruct a signal is of significant importance.

With the explosive growth of information and communication,
signals are being generated at an unprecedented rate from various
sources, including social networks, citation networks, biological net-
works, and physical infrastructure [1]. Unlike time-series signals or
images, these signals possess complex, irregular structure, which re-
quires novel processing techniques leading to the emerging field of
signal processing on graphs [2]. Product graphs are graphs that are
composed of smaller graph atoms; we motivate how this model is a
flexible and useful way to model richer data that may be multi-modal
in nature [3–5]. For example, product graph composition using a
product operator is a natural way to model time-varying signals on a
sensor network as shown in Figure 1(b). The graph signal formed by
the measurements of all the sensors at all the time steps is supported
by the graph that is the product of the sensor network graph and the
time series graph. The kth measurement of the nth sensor is indexed
by the nth node of the kth copy of the sensor network graph. Multi-
ple types of graph products exist, that is, we can enforce connections
across modes in different ways [6]. In the case of the Cartesian prod-
uct as in Figure 1(b), the measurement of the nth sensor at the kth

time step is related to not only to its neighboring sensors at the kth

Emails: rohanv@andrew.cmu.edu, jelenak@nyu.edu
This work is supported by NSF under grant CCF-1563918

time step but also to its measurements at the (k−1)th and (k+1)th

time steps respectively. A social network with multiple communities
can also be represented by the Kronecker graph product of the graph
that represents a community structure and the graph that captures
the interaction between neighbors. In the context of recommender
engines where we have user ratings for different entities at different
times, we can view this as a signal lying on the Kronecker product of
three graphs, the graph relating the different users, the graph relating
the different entities, and the time graph.

In graph signal processing, a canonical assumption is that the
graph signal is smooth with respect to the underlying graph struc-
ture, that is, the signal coefficients vary slowly over local neighbor-
hoods of the graph. Hence, constructing a framework for the ef-
ficient reconstruction of smooth signals on such product graphs is
an important step for tasks such as graph signal recovery, compres-
sion, and semi-supervised learning on large-scale and multi-modal
graphs. While it is straightforward to apply existing methods and
algorithms for smooth graph signal recovery that treat the product
graph as a holistic entity, our motivations for this work and conse-
quently our contributions are two-fold. We aim to develop a frame-
work for the reconstruction of smooth signals on product graphs that
not only (1) exploits the inherent structure in product graphs for bet-
ter performance, but also affords us (2) savings in computational
complexity.

2. GRAPH SIGNAL PROCESSING

2.1. Graphs, Graph Signals and Product Graphs

We consider a graph G = (V,A), where V = {v0, . . . , vN−1} is
the set of nodes and A ∈ RN×N is the graph shift, or a weighted
adjacency matrix. A Represents the connections of the graph G,
which can be either directed or undirected. The edge weight w(n→
m) = An,m between nodes vn and vm is a quantitative expression
of the underlying relation between the nth and the mth node, such
as a similarity, a dependency, or a communication pattern. If a non-
zero edge weight between vn and vm exists, we write vn ∼ vm.
In this work, we only consider undirected graphs with positive edge
weights. We can define the graph Laplacian as L = D−A, where
D is the diagonal degree matrix. Once the node order is fixed, the

(a) (b)

Fig. 1: (a) Under the Kronecker product, (u1, u2) ∼ (v1, v2) in the product graph if
u1 ∼ v1 and u2 ∼ v2. (b) Under the Cartesian product, (u1, u2) ∼ (v1, v2) in
the product graph if u1 = v1 and u2 ∼ v2 or u1 ∼ v1 and u2 = v2

4958978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



graph signal is written as a vector

x =
[
x0, x1, . . . , xN−1

]T ∈ RN .

Product graphs are graphs whose adjacency matrices are com-
posed using the product (represented by the square symbol �) of the
adjacency matrices of smaller graph atoms. Consider two graphs
G1 = (V1,A1) and G2 = (V2,A2) . The graph product of G1

and G2 is the graph G = G1�G2 = (V,A1 �A2) where |V| =
|V1| · |V2|. The set of nodes V is the Cartesian product of the sets V1
and V2. That is, a node (u1, u2) is created for every u1 ∈ V1 and
u2 ∈ V2.

Typically, we use one of the Kronecker graph product (⊗, Fig-
ure 1(a)), the Cartesian graph product (⊕, Figure 1(b) or the strong
graph product (�) which is a combination of both the Kronecker and
Cartesian product to compose a product graphs. Since the product
is associative, one can extend the above formulation to define prod-
uct graphs constructed from multiple graph-atoms. In the following
exposition, for clarity and brevity, we only consider the Kronecker
product. However, the frameworks and algorithms either hold or can
easily be extended to both Cartesian and strong products. We con-
sider a product graph G = (V,A), |V| = N , that is constructed
from J graph atoms G1, G2, · · ·GJ , where Gj = (Vj ,Aj), |Vj | =
Nj , using the Kronecker product where

∏J
j=1Nj = N . We can

write the resulting graph shift matrix of the product graph as

A = A(1)⊗A(2)⊗ · · · ⊗A(J) = ⊗Jj=1 A
(j) (1)

2.2. Bandlimited Signals and Smoothness

A natural proxy for the smoothness of a signal on a graph is its vari-
ation over the graph which can be defined with respect to the graph
adjacency matrix such that SA(x) = ‖x−Ax‖22 or with respect
to the graph Laplacian SL(x) = xT Lx. We note that both these
characterizations are similar, and can be used interchangeably in our
algorithms. With a slight abuse of notation, we use the latter charac-
terization with respect to the graph Laplacian and denote it by S(x)
in the following exposition.

Definition 1. We can define a graph signal x ∈ RN as being smooth
on a graph with parameter η ≥ 0, when S(x) ≤ η ‖x‖22 .

The spectral decomposition of A is A = VΛU where the
eigenvectors of A form the columns of the graph Fourier basis V [7].
We can show that smooth signals are approximately bandlimited,
that is the majority of their energy lies in the low-frequency subspace
spanned by the top K vectors of the graph Fourier basis V [8–10].

3. RECONSTRUCTION OF SMOOTH SIGNALS

In the basic setting, we assume we measure a noisy or corrupted
signal y and seek to reconstruct x from y where ε ∼ N (0, σ2I).

y = x + ε

Broadly, there are two frameworks for signal reconstruction or
estimation. The first, which we refer to as the synthesis framework,
generally consists of constructing an appropriate basis or dictionary
over the graph for the class of signals, and then regressing the ob-
served signal y over this basis. The second, which we can refer to as
the analysis framework, typically formulates an optimization prob-
lem with a regularizer that penalizes some criterion.

The graph Fourier basis promotes smoothness in the sense that
smooth signals are approximately bandlimited with respect to the

graph Fourier basis. A straightforward way to recover the signal un-
der the synthesis framework would then be to choose the bestK such
that we project the signal onto the corresponding bandlimited space.
We refer to this method as GFProj. Rather than explicitly enforcing
bandlimitedness, under the analysis framework, we can formulate a
convex optimization problem that minimizes the graph variation of
the graph signal by solving the following problem which we refer
to as GTV: minx ‖y − x‖22 + λ S(x). While this is the basic for-
mulation, [11] presents a more flexible framework that can deal with
multiple signals as well as outliers. The approaches described in [11]
however, do not exploit the inherent structure of product graphs, and
instead treat the graph holistically.

3.1. Smooth Graph Signals as Low-Dimensional Tensors

It is straightforward to see that we can leverage the formulations
presented above directly on product graphs without incorporating the
structure of the product graph. However, in the following discussion,
we study the reconstruction of smooth signals on product graphs by
exploiting the low-dimensional structure of the signal on the product
graph.

A natural way to organize signals on product graphs is by using
tensors that can be thought of as generalizations of a matrix to higher
dimensions. [12, 13]. In the case of a signal lying on a product of
three graphs ,we represent the data by a 3rd order tensor X where
the (i1, i2, i3)-th entry in the tensor X indicates the signal value
corresponding to the node in the product graph corresponding to the
tuple of the i1-th node in A1 , the i2-th node in A2, and the i3-th
node in A3. In the context of recommender engines for example, this
would in turn correspond to the i-th user’s rating of the j-th entity at
the k-th time instant. Hence, a signal x ∈ RN associated with the
product graph defined in 1 can be organized as a J-th order tensor
X ∈ RN1×N2···×NJ .

We largely adopt the nomenclature and notation in [12] for ten-
sors. Fibers are the higher order analog of rows and columns in
matrix and are obtained by fixing every index but one. The mode-
j unfolding of the tensor X , X(j) ∈ RNj×(N/Nj) arranges the
mode-j fibers as the columns of the matrix. The j-mode (matrix)
product of a tensor X with a matrix Φ denoted by X ×j Φ cor-
responds to multiplying each mode-j fibre by Φ. Let×J

j=1
Fj be

short-form for multiplying a tensor along each mode by Fj . That
is, G(×J

j=1
Fj) = G ×1 F1 ×2 F2 · · · ×J FJ . The CP -rank of

a tensor is defined as the minimum number of rank-one tensors that
generate X as their sum. In general, computing the CP -rank of a
tensor is difficult, in fact, it is an NP-hard problem. An alternative
notion of the rank of a tensor, the n-rank,is the tuple of the ranks
of the mode-n unfoldings which is easy to compute and yields a
greater degree of flexibility. As a result, in this work, we only con-
sider the n-rank of a tensor to quantify the low dimensional structure
of the tensor. Any signal x on a product graph A can be decom-
posed as x =

∑R
i=1 x

(1)
i ⊗ x

(2)
i · · · ⊗ x

(J)
i such that each x(j) lies

on the respective graph atom Aj . We can study the decomposition
of smooth signals on product graphs and show how an extension
of the smoothness assumption to signals on product graphs leads to
the corresponding tensor X possessing a low-dimensional structure.
We can then also show that the j-mode fibers of the tensor X cor-
responding to x are smooth with respect to the j-th graph atom Aj .
As a result, in the following algorithms and frameworks, we exploit
this low-dimensional structure of the graph signal tensor for smooth
signal recovery.

4959



X<latexit sha1_base64="cjxWLffqlGvTygX6lqG/DQkun0Q=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC2koWy2m3bpJht2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51jco04x2mpNK9kBouRcI7KFDyXqo5jUPJH8PJbeE/PnFthEoecJryIKajRESCUbSS348pjhmVeW82qDfcpjsHWSVeSRpQoj2of/WHimUxT5BJaozvuSkGOdUomOSzWj8zPKVsQkfctzShMTdBPo88I2dWGZJIafsSJHP190ZOY2OmcWgni4hm2SvE/zw/w+g6yEWSZsgTtvgoyiRBRYr7yVBozlBOLaFMC5uVsDHVlKFtqWZL8JZPXiXdi6bnNr37y0brpqyjCidwCufgwRW04A7a0AEGCp7hFd4cdF6cd+djMVpxyp1j+APn8weTQZFu</latexit><latexit sha1_base64="cjxWLffqlGvTygX6lqG/DQkun0Q=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC2koWy2m3bpJht2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51jco04x2mpNK9kBouRcI7KFDyXqo5jUPJH8PJbeE/PnFthEoecJryIKajRESCUbSS348pjhmVeW82qDfcpjsHWSVeSRpQoj2of/WHimUxT5BJaozvuSkGOdUomOSzWj8zPKVsQkfctzShMTdBPo88I2dWGZJIafsSJHP190ZOY2OmcWgni4hm2SvE/zw/w+g6yEWSZsgTtvgoyiRBRYr7yVBozlBOLaFMC5uVsDHVlKFtqWZL8JZPXiXdi6bnNr37y0brpqyjCidwCufgwRW04A7a0AEGCp7hFd4cdF6cd+djMVpxyp1j+APn8weTQZFu</latexit><latexit sha1_base64="cjxWLffqlGvTygX6lqG/DQkun0Q=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC2koWy2m3bpJht2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51jco04x2mpNK9kBouRcI7KFDyXqo5jUPJH8PJbeE/PnFthEoecJryIKajRESCUbSS348pjhmVeW82qDfcpjsHWSVeSRpQoj2of/WHimUxT5BJaozvuSkGOdUomOSzWj8zPKVsQkfctzShMTdBPo88I2dWGZJIafsSJHP190ZOY2OmcWgni4hm2SvE/zw/w+g6yEWSZsgTtvgoyiRBRYr7yVBozlBOLaFMC5uVsDHVlKFtqWZL8JZPXiXdi6bnNr37y0brpqyjCidwCufgwRW04A7a0AEGCp7hFd4cdF6cd+djMVpxyp1j+APn8weTQZFu</latexit><latexit sha1_base64="hP+6LrUf2d3tZaldqaQQvEKMXyw=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odBu3wMYA6nMMFXEEIN3AHD9CBLghI4BXevYn35n2suqp569LO4I+8zx84xIo4</latexit><latexit sha1_base64="EmqiDhPGtHAxwThW7FZJQs9cQ3c=">AAAB53icbVBNSwMxFHxbv2qtWr16CRbBU9n1okfBi8cK9gO2S8mm2TY0myzJ20JZ+jO8eFDEf+TNf2O27UFbBwLDzHtk3sSZFBZ9/9ur7Ozu7R9UD2tH9eOT08ZZvWt1bhjvMC216cfUcikU76BAyfuZ4TSNJe/F04fS7824sUKrZ5xnPErpWIlEMIpOCgcpxQmjsugvho2m3/KXINskWJMmrNEeNr4GI83ylCtkklobBn6GUUENCib5ojbILc8om9IxDx1VNOU2KpaRF+TKKSOSaOOeQrJUf28UNLV2nsZusoxoN71S/M8Lc0zuokKoLEeu2OqjJJcENSnvJyNhOEM5d4QyI1xWwibUUIaupZorIdg8eZt0b1qB3wqefKjCBVzCNQRwC/fwCG3oAAMNL/AG7x56r97Hqq6Kt+7tHP7A+/wBT4GQEQ==</latexit><latexit sha1_base64="EmqiDhPGtHAxwThW7FZJQs9cQ3c=">AAAB53icbVBNSwMxFHxbv2qtWr16CRbBU9n1okfBi8cK9gO2S8mm2TY0myzJ20JZ+jO8eFDEf+TNf2O27UFbBwLDzHtk3sSZFBZ9/9ur7Ozu7R9UD2tH9eOT08ZZvWt1bhjvMC216cfUcikU76BAyfuZ4TSNJe/F04fS7824sUKrZ5xnPErpWIlEMIpOCgcpxQmjsugvho2m3/KXINskWJMmrNEeNr4GI83ylCtkklobBn6GUUENCib5ojbILc8om9IxDx1VNOU2KpaRF+TKKSOSaOOeQrJUf28UNLV2nsZusoxoN71S/M8Lc0zuokKoLEeu2OqjJJcENSnvJyNhOEM5d4QyI1xWwibUUIaupZorIdg8eZt0b1qB3wqefKjCBVzCNQRwC/fwCG3oAAMNL/AG7x56r97Hqq6Kt+7tHP7A+/wBT4GQEQ==</latexit><latexit sha1_base64="BBqxbnYiZsTNJE63qYl5qUxtQUs=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiRudFl047KCfUAaymQ6aYdOJmHmRiihn+HGhSJu/Rp3/o2TNgttPTBwOOde5twTplIYdN1vp7KxubW9U92t7e0fHB7Vj0+6Jsk04x2WyET3Q2q4FIp3UKDk/VRzGoeS98LpXeH3nrg2IlGPOEt5ENOxEpFgFK3kD2KKE0Zl3p8P6w236S5A1olXkgaUaA/rX4NRwrKYK2SSGuN7bopBTjUKJvm8NsgMTymb0jH3LVU05ibIF5Hn5MIqIxIl2j6FZKH+3shpbMwsDu1kEdGseoX4n+dnGN0EuVBphlyx5UdRJgkmpLifjITmDOXMEsq0sFkJm1BNGdqWarYEb/XkddK9anpu03twG63bso4qnME5XIIH19CCe2hDBxgk8Ayv8Oag8+K8Ox/L0YpT7pzCHzifP5IBkWo=</latexit><latexit sha1_base64="cjxWLffqlGvTygX6lqG/DQkun0Q=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC2koWy2m3bpJht2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51jco04x2mpNK9kBouRcI7KFDyXqo5jUPJH8PJbeE/PnFthEoecJryIKajRESCUbSS348pjhmVeW82qDfcpjsHWSVeSRpQoj2of/WHimUxT5BJaozvuSkGOdUomOSzWj8zPKVsQkfctzShMTdBPo88I2dWGZJIafsSJHP190ZOY2OmcWgni4hm2SvE/zw/w+g6yEWSZsgTtvgoyiRBRYr7yVBozlBOLaFMC5uVsDHVlKFtqWZL8JZPXiXdi6bnNr37y0brpqyjCidwCufgwRW04A7a0AEGCp7hFd4cdF6cd+djMVpxyp1j+APn8weTQZFu</latexit><latexit sha1_base64="cjxWLffqlGvTygX6lqG/DQkun0Q=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC2koWy2m3bpJht2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51jco04x2mpNK9kBouRcI7KFDyXqo5jUPJH8PJbeE/PnFthEoecJryIKajRESCUbSS348pjhmVeW82qDfcpjsHWSVeSRpQoj2of/WHimUxT5BJaozvuSkGOdUomOSzWj8zPKVsQkfctzShMTdBPo88I2dWGZJIafsSJHP190ZOY2OmcWgni4hm2SvE/zw/w+g6yEWSZsgTtvgoyiRBRYr7yVBozlBOLaFMC5uVsDHVlKFtqWZL8JZPXiXdi6bnNr37y0brpqyjCidwCufgwRW04A7a0AEGCp7hFd4cdF6cd+djMVpxyp1j+APn8weTQZFu</latexit><latexit sha1_base64="cjxWLffqlGvTygX6lqG/DQkun0Q=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC2koWy2m3bpJht2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51jco04x2mpNK9kBouRcI7KFDyXqo5jUPJH8PJbeE/PnFthEoecJryIKajRESCUbSS348pjhmVeW82qDfcpjsHWSVeSRpQoj2of/WHimUxT5BJaozvuSkGOdUomOSzWj8zPKVsQkfctzShMTdBPo88I2dWGZJIafsSJHP190ZOY2OmcWgni4hm2SvE/zw/w+g6yEWSZsgTtvgoyiRBRYr7yVBozlBOLaFMC5uVsDHVlKFtqWZL8JZPXiXdi6bnNr37y0brpqyjCidwCufgwRW04A7a0AEGCp7hFd4cdF6cd+djMVpxyp1j+APn8weTQZFu</latexit><latexit sha1_base64="cjxWLffqlGvTygX6lqG/DQkun0Q=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC2koWy2m3bpJht2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51jco04x2mpNK9kBouRcI7KFDyXqo5jUPJH8PJbeE/PnFthEoecJryIKajRESCUbSS348pjhmVeW82qDfcpjsHWSVeSRpQoj2of/WHimUxT5BJaozvuSkGOdUomOSzWj8zPKVsQkfctzShMTdBPo88I2dWGZJIafsSJHP190ZOY2OmcWgni4hm2SvE/zw/w+g6yEWSZsgTtvgoyiRBRYr7yVBozlBOLaFMC5uVsDHVlKFtqWZL8JZPXiXdi6bnNr37y0brpqyjCidwCufgwRW04A7a0AEGCp7hFd4cdF6cd+djMVpxyp1j+APn8weTQZFu</latexit><latexit sha1_base64="cjxWLffqlGvTygX6lqG/DQkun0Q=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC2koWy2m3bpJht2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51jco04x2mpNK9kBouRcI7KFDyXqo5jUPJH8PJbeE/PnFthEoecJryIKajRESCUbSS348pjhmVeW82qDfcpjsHWSVeSRpQoj2of/WHimUxT5BJaozvuSkGOdUomOSzWj8zPKVsQkfctzShMTdBPo88I2dWGZJIafsSJHP190ZOY2OmcWgni4hm2SvE/zw/w+g6yEWSZsgTtvgoyiRBRYr7yVBozlBOLaFMC5uVsDHVlKFtqWZL8JZPXiXdi6bnNr37y0brpqyjCidwCufgwRW04A7a0AEGCp7hFd4cdF6cd+djMVpxyp1j+APn8weTQZFu</latexit><latexit sha1_base64="cjxWLffqlGvTygX6lqG/DQkun0Q=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyCp5KIoMeiF48VbC2koWy2m3bpJht2X4QS+jO8eFDEq7/Gm//GTZuDtg4sDDPvsfMmTKUw6LrfTmVtfWNzq7pd29nd2z+oHx51jco04x2mpNK9kBouRcI7KFDyXqo5jUPJH8PJbeE/PnFthEoecJryIKajRESCUbSS348pjhmVeW82qDfcpjsHWSVeSRpQoj2of/WHimUxT5BJaozvuSkGOdUomOSzWj8zPKVsQkfctzShMTdBPo88I2dWGZJIafsSJHP190ZOY2OmcWgni4hm2SvE/zw/w+g6yEWSZsgTtvgoyiRBRYr7yVBozlBOLaFMC5uVsDHVlKFtqWZL8JZPXiXdi6bnNr37y0brpqyjCidwCufgwRW04A7a0AEGCp7hFd4cdF6cd+djMVpxyp1j+APn8weTQZFu</latexit>

Fig. 2: Mode unfoldings of a third-order tensor along each of its three modes.

3.2. Reconstruction via Smooth Tucker Decomposition

Similarly to matrix factorization, PCA, and in graph signal process-
ing, transforms such as spectral graph wavelets and the graph Fourier
transform, tensor decomposition allows us to detect latent structure
in graph data. The Tucker decomposition decomposes a tensor into
a core tensor and multiple matrices which correspond to different
core scalings along each mode. Therefore, the Tucker decomposi-
tion can be seen as a higher-order PCA [12–14]. For a J-th order
tensor, the Tucker decomposition approximates a tensor X with a
core-tensor G and J column-wise orthonormal factor matrices Fj ∈
RNjxRj , Pj ≤ Nj j = {1, · · · , J} such that X = G(×J

j=1
Fj).

Under such a decomposition, the n-rank of X is simply the tuple
of the ranks of the mode-j unfoldings, (R1, R2 · · ·RJ). We note
however that, in general, we need to estimate or fix the n-rank be-
forehand which is often difficult or unwieldy.

3.2.1. Synthesis

We now formulate the direct analog of the synthesis approach on a
single graph in GFProj, where we project the signal onto the low-
frequency bandlimited subspace spanned by the graph Fourier basis
vectors, to the Tucker decomposition and product graphs. We note
that by setting each of the factor matrices equal to the leading Rj
columns of the GFT basis V(j) of the graph atoms Aj , we can en-
force bandlimitedness of the product signal on the graph. That is,
by setting Fj = V

(j)
Rj

we can explicitly enforce smoothness of the
graph signal on the product graph. We call this algorithm TD-S.

3.2.2. Analysis

Under the analysis framework, we now formulate an optimization
problem that enforces in addition to the Tucker decomposition struc-
ture described above, a smoothness regularizer. Particularly, given a
set of graph signals on a product graph, we aim to find a low-rank
decomposition that explicitly enforces smoothness not only across
edges within the same mode but also across modes of the tensor or
product graph. We can define the optimization problem as follows:

arg min
X

‖Y − G(
J×
j=1

Fj)‖2F + λg(Fi) + γh(Fi)

subject to g(Fi) =

J∑
j=1

tr(F T
j Lj Fj),

h(Fi) = tr((⊗Jj=1Fj)
T L(⊗Jj=1Fj)),

F T
i Fi = I, ∀i

(2)

g(·) enforces smoothness within modes while h(·) enforces
smoothness across modes of the tensor or product graph. Since the

above formulation is convex over each of the variables we are opti-
mizing over, we can solve it in an alternating fashion by solving for
each of Fj while leaving the other factor matrices F(−j) fixed. Due
to lack of space, we omit detailed derivations and only present the
framework in Algorithm 1 which we refer to as TD-A. It is closely
related to and is a generalization of previous work in [15].

Algorithm 1 (TD-A): Tucker Decomposition via Alternating Least
Squares

1: Inputs: Y , Rj , ∀j ∈ {1 · · · J} and parameters λ, γ
2: Initialize:

F
(0)
j = I, ∀j

3: repeat
4: for j ← 1 to J do
5: M

(k+1)
j ← Y(j)

⊗J
j=1,j 6=i F

(k)
j

6: uj ←
∏J
j=1,j 6=i tr(F

(k)T
j Dj F

(k)
j )

7: vj =
∏J
j=1,j 6=i tr(F

(k)T
j Aj F

(k)
j )

8: H
(k+1)
j ←M

(k+1)
j M

(k+1)T
j − (λ+ γuj)Dj +(λ+

γvj)Aj

9: F
(k+1)
j ← top Rj eigenvectors of H(k+1)

j

10: end for
11: k ← k + 1
12: until convergence
13: G = Y(×J

j=1
F

(k)T
j )

3.3. Reconstruction via the Nuclear Norm of Unfoldings

In the algorithms presented in Section 3.2, we saw that we needed
to fix or estimate the n-rank beforehand which can often be incon-
venient. In this section, we alleviate this inflexibility by presenting a
more direct optimization formulation. The sum of each of the ranks
of the mode-j unfoldings in the n-rank tuple

∑J
j=1Rj has been pro-

posed as a proxy for the n-rank [16–18]. We can then use the nuclear
norm as a convex surrogate for the rank as is done in many matrix
completion problems [19]. We also enforce smoothness of each of
the mode-j fibers with respect to the j-th graph atom and define the
following convex optimization problem:

minimize
X

‖Y −X‖2F +

J∑
j=1

[α tr(XT
(j) Lj X(j)) + β‖X(j)‖∗]

(3)
We solve this via the alternating direction method of mul-

tipliers (ADMM) framework for separable optimization prob-
lems [16, 20]. Towards this, we introduce J tensor variables
Z1, · · ·ZJ which represent the J different mode-j unfoldings
X(1), · · · ,X(J) of the tensor X such that the mode-j unfolding of
Zj , Zj,(j) = X(j), ∀j ∈ {1, 2, · · · J}. We can rewrite (3) in the
form f(X ) +

∑J
j=1 gj(Zj):

minimize
X ,Zj

‖Y −X‖2F +

J∑
j=1

[α tr(ZT(j) Lj Z(j)) + β‖Z(j) ‖∗]

subject to Zj = X , ∀j
(4)

We can then write the augmented Lagrangian where Wj are the

4960



Lagrange variables and µ is the penalty parameter as:

minimize
X ,Z{j},W{j}

‖Y −X‖2F +

J∑
j=1

[α tr(ZTj,(j) Lj Zj,(j))+

β‖Zj,(j) ‖∗− <Wj ,X −Zj > +
µ

2
‖X −Zj ‖2F ]

(5)
Due to limitations on space, we do not present detailed deriva-

tions when we minimize 5 over X and Zj respectively. However,
we note that the subproblem when solving for Zj is

minimize
Zj,(j)

α tr(ZTj,(j) Lj Z(j)) + β‖Zj,(j) ‖∗+

<Wj,(j),Zj,(j) > +
µ

2
‖X(j) − Zj,(j) ‖2F

(6)

We can solve this convex problem by generalized gradient de-
scent [21] by solving a proximity function in each step with respect
to the nuclear norm. We define Dτ (C) to be the operator that
shrinks the singular values of C by soft-thresholding the singular
values of C by τ . We call the resulting sub-algorithm GD-Z and
give an overview in Algorithm 2. We refer to the overall algorithm
as NNFold, the pseudocode for which is presented in Algorithm 3.

Algorithm 2 (GD-Z): Gradient Descent Algorithm for 6

1: Inputs: Wj,(j),X(j), and parameters α, β, µ
2: Initialize:

Zj,(j) = 0
3: repeat until convergence
4: Choose step size t by backtracking line search
5: Zj,(j) ← Dtβ(Zj,(j)−t[2µ(Zj,(j)−X(j)) +

Wj,(j) +2αLZj,(j)])
6: until termination
7: return Zj,(j)

Algorithm 3 (NNFold): ADMM algorithm for 3

1: Inputs: Y , and parameters α, β, µ
2: Initialize:

X
(0)

(j) ,Z
(0)

(j),W
(0)

(j) = 0,∀j
3: repeat until convergence
4: X (k+1) ← 1

Jµ−2

∑J
j=1(W(k)

j +µZ(k)
j )− 2Y

5: for j ← 1 to J do
6: Z

(k+1)

j,(j) ← GD-Z(W
(k)

j,(j),X
(k)

(j) , α, β, µ)

7: W(k+1)
j ←W(k)

j −µ(X (k+1) −Z(k+1)
j )

8: end for
9: k ← k + 1

10: until termination
11: return X (k)

Theorem 1. Algorithm 3 NNFold converges if the optimal solution
set is nonempty such that every limit point of the sequence {X (k)}
is an optimal solution.

Proof. Proof omitted due to lack of space

4. NUMERICAL EXPERIMENTS

We construct a synthetic ground truth smooth signal on a product
graph A composed using the Kronecker product of a random ge-
ometric graph, star graph and a chain graph each of which has 25

Fig. 3: Reconstructed signal SNR for varying levels of noise

nodes. We use a heat diffusion model over the product graph such
that the graph signal tensor has varying CP -ranks, r = 2, 4, 6. We
add noise so the signal we denoise over Y has an SNR of 5dB. We
compare the algorithms GFProj (Section 3), GTV (Section 3), TD-
S(Section 3.2.1), TD-A(Section 3.2.2), and NNFold(Section 3.3).
The results are shown in the Table 1. We see that TD-A, NNfold
that exploit the product structure consistently outperform GFProj
and GTV while NNfold tends to outperform the Tucker decomposi-
tion based methods especially for more complex signals.

r = 2 r = 4 r = 6
GFProj 1.85e-3 4.6e-2 4.9e-2
GTV 7.82e-4 8.12e-3 8.88e-3
TD-S 1.22e-3 9.14e-3 1.23e-2
TD-A 9.21e-5 6.42e-4 3.2e-3
NNFold 2.02e-4 5.98e-4 9.69e-4

Table 1: MSE for denoising smooth signal on product graph using each of the 5 dis-
cussed algorithms

For the same synthetic smooth signal, we compare Algo-
rithms TD-A and NNfold for denoising for different levels of noise.
The results are shown in Figure 3. While at high SNR levels, they
are both very similar, at low SNR levels or in noisy settings, NNfold
performs significantly better.

Computational Complexity: The graph atoms A(j) the prod-
uct graph is composed of are of size O(poly(N

1
J )). Since we only

perform computationally heavy operations like matrix inversion and
singular value decomposition (O(N3)) on structures derived from
the graph atoms, the algorithms yield significant computational gains
over algorithms that do not exploit the structure in product graphs.

5. CONCLUSIONS

Product graphs are a pragmatic and flexible framework for model-
ing many kinds of multi-modal real-world graph structured data. In
this work, we studied the reconstruction of noisy smooth signals on
product graphs. We exploited the low-dimensionality of these sig-
nals on product graphs by modeling them as low-rank tensors. Our
motivations in this work are two-fold in that in addition to better re-
construction performance, we can also gain computational savings.
We presented two main algorithms the first of which is based on the
Tucker decomposition while the second is based on the the nuclear
norm of the mode-j unfoldings of the tensor. Further, we presented
numerical experiments that showcase the superior performance of
these algorithms with respect to algorithms that do not exploit the
structure of product graphs.

4961



6. REFERENCES

[1] M. Newman, Networks. Oxford University Press, 2018.

[2] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges,
and applications,” Proceedings of the IEEE, vol. 106, no. 5,
pp. 808–828, 2018.

[3] A. Sandryhaila and J. M. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of mas-
sive data sets with irregular structure,” IEEE Signal Processing
Magazine, vol. 31, no. 5, pp. 80–90, 2014.

[4] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and
Z. Ghahramani, “Kronecker graphs: An approach to modeling
networks,” Journal of Machine Learning Research, vol. 11, no.
Feb, pp. 985–1042, 2010.

[5] R. Varma and J. Kovačević, “Sampling Theory for Graph Sig-
nals on Product Graphs,” arXiv preprint arXiv:1809.10049,
2018.

[6] P. M. Weichsel, “The Kronecker product of graphs,” Proceed-
ings of the American mathematical society, vol. 13, no. 1, pp.
47–52, 1962.

[7] M. Vetterli, J. Kovačević, and V. K. Goyal, Foundations of sig-
nal processing. Cambridge University Press, 2014.

[8] S. Chen, R. Varma, A. Sandryhaila, and J. Kovačević, “Dis-
crete Signal Processing on Graphs: Sampling Theory,” IEEE
transactions on signal processing, vol. 63, no. 24, pp. 6510–
6523, 2015.

[9] S. Chen, R. Varma, A. Singh, and J. Kovačević, “Signal repre-
sentations on graphs: Tools and applications,” arXiv preprint
arXiv:1512.05406, 2015.

[10] ——, “Signal recovery on graphs: Fundamental limits of sam-
pling strategies,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 2, no. 4, pp. 539–554, 2016.

[11] S. Chen, A. Sandryhaila, J. M. Moura, and J. Kovacevic,
“Signal Recovery on Graphs: Variation Minimization.” IEEE
Trans. Signal Processing, vol. 63, no. 17, pp. 4609–4624,
2015.

[12] T. G. Kolda and B. W. Bader, “Tensor decompositions and ap-
plications,” SIAM review, vol. 51, no. 3, pp. 455–500, 2009.

[13] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E.
Papalexakis, and C. Faloutsos, “Tensor decomposition for sig-
nal processing and machine learning,” IEEE Transactions on
Signal Processing, vol. 65, no. 13, pp. 3551–3582, 2017.

[14] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao,
C. Caiafa, and H. A. Phan, “Tensor decompositions for sig-
nal processing applications: From two-way to multiway com-
ponent analysis,” IEEE Signal Processing Magazine, vol. 32,
no. 2, pp. 145–163, 2015.

[15] A. Narita, K. Hayashi, R. Tomioka, and H. Kashima, “Tensor
factorization using auxiliary information,” Data Mining and
Knowledge Discovery, vol. 25, no. 2, pp. 298–324, 2012.

[16] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and
low-n-rank tensor recovery via convex optimization,” Inverse
Problems, vol. 27, no. 2, p. 025010, 2011.

[17] M. Yuan and C.-H. Zhang, “On tensor completion via nuclear
norm minimization,” Foundations of Computational Mathe-
matics, vol. 16, no. 4, pp. 1031–1068, 2016.

[18] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion
for estimating missing values in visual data,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 35,
no. 1, pp. 208–220, 2013.

[19] E. J. Candès and B. Recht, “Exact matrix completion via con-
vex optimization,” Foundations of Computational mathemat-
ics, vol. 9, no. 6, p. 717, 2009.

[20] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends in
Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[21] S. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge university press, 2004.

4962


		2019-03-18T11:09:10-0500
	Preflight Ticket Signature




