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ABSTRACT

We consider the problem of semi-supervised clustering for

multiple (more than two) classes. The proposed clustering

algorithm uses the (dis)similarity of given data to learn the

unknown cluster labels. We quantify label (dis)similarity in

terms of the new concept of signed total variation (TV). The

clustering task is formulated as a convex optimization prob-

lem with an ℓ1-norm regularization term that helps when only

few labels are known. We solve the optimization problem by

developing an ADMM-based algorithm whose per-iteration

complexity scales linearly with the number of edges and

the number of clusters. Our algorithm admits a distributed

implementation and can therefore efficiently handle large-

dimensional problems. Numerical experiments demonstrate

the superiority of our scheme.

1. INTRODUCTION

We address the problem of graph-based semi-supervised clus-

tering, i.e., grouping the nodes of a graph under the assump-

tion that the cluster affiliation is known for certain data points.

Classical semi-supervised learning algorithms (e.g., [1–4])

group the nodes based on similarity relations between nodes.

However, there are numerous problems where some nodes are

known to have different class labels. Incorporating such dis-

similarity information extends the range of applications and

can significantly improve the clustering accuracy. Noticeable

applications include constrained image segmentation [5] or

the prediction of political positions [6]. Signed graphs can

model (dis)similarity information [7] and motivated clus-

tering algorithms based on signed Laplacians [6, 7]. For

unsigned graphs it is well known that clustering based on TV

outperforms Laplacian clustering [8–10]. In [11] we found

that the same is true for two clusters in signed graphs.

Contributions. We generalize the signed TV based semi-

supervised clustering approach from [11] to more than two

classes. Furthermore, we introduce an ℓ1 regularization that

improves clustering performance in cases where only few

cluster labels are known. We show that this regularization

can be directly incorporated into the TV term via a weight

adjustment of the edges incident to the sampled nodes. We

develop a low-complexity distributed ADMM-based algo-

rithm for signed total variation minimization that solves the
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regularized clustering problem. Our numerical experiments

demonstrate accurate clustering performance of our scheme.

2. BACKGROUND

Consider a graph G = (V , E ,W) with vertex set V =
{1, . . . , N}, edge set E ⊆ V × V , and edge weight matrix

W ∈ R
N×N . We admit for signed graphs, i.e., graphs with

possibly negative edge weights. In similarity-based/unsigned

clustering the node set V is partitioned into K clusters

V1, . . . ,VK (
⋃K

k=1 Vk = V , Vi ∩ Vj = ∅) based on the

idea that nodes are more similar within a cluster than across

clusters. In signed clustering, dissimilarity relations between

nodes are taken into account besides similarity relations. Dis-

similarity of two nodes indicates that they likely belong to

different clusters.

Unsigned clustering. The amount of similarity between

two nodes i and j is captured by the non-negative weight

Wij ≥ 0. The goal is to determine the unknown clusters

V1, . . . ,VK when the graph topology is given in terms of the

non-negative weight matrix W and the number of clusters K
is known. Most clustering algorithms determine the clusters

by approximate minimization of the graph cut, i.e.,

min
V1,...,VK

K∑

k=1

(
∑

i∈Vk

∑

j∈V\Vk

Wij

)
.

Side constraints on the size of the clusters are imposed to

avoid trivial solutions. A frequently used relaxation is to

replace the graph cut with the Laplacian quadratic form
1
2

∑
i

∑
j(xi − xj)

2 Wij [1, 3, 12–14]. However, a tighter

relaxation is obtained by using the TV
∑

i

∑
j |xi − xj |Wij

[8, 9]. In fact, for semi-supervised clustering (that is, given

the labels of some sampled nodes) one can even show the

equivalence between TV based clustering and minimum cuts

for the case of two clusters [1, 11].

Signed clustering. We model dissimilarity of two nodes

i and j by a negative edge weight Wij < 0, with the mag-

nitude |Wij | describing the amount of dissimilarity. We next

review the basic idea of clustering on signed graphs (i.e., with

dissimilarity) for K = 2 clusters. The clusters can be con-

veniently described by a label vector x ∈ {−1, 1}N with

xi = 1 for i ∈ V1 and xi = −1 for i ∈ V2. In [6, 7],

dissimilarity is incorporated by using the signed Laplacian
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L = D −W with D = diag{d̄1, . . . , d̄N}, d̄i =
∑

j |Wij |.

The induced Laplacian form reads xTLx = 1
2

∑
i

∑
j(xi −

Sijxj)
2 |Wij |, where Sij = sign(Wij) serves as a binary in-

dicator for dis/similarity. This motivated us to introduce the

following signed total variation [11]:

‖x‖TV ,
∑

i

∑

j

|xi − Sijxj | |Wij | . (1)

For edges (i, j) with negative weights |xi − Sijxj | |Wij | =
|xi + xj | |Wij | is small whenever xi ≈ −xj .

3. SEMI-SUPERVISED MULTICLASS TV

CLUSTERING

3.1. Basic Method

We next generalize the TV based bi-partition clustering

scheme from [11] to K ≥ 2 clusters. We assume that

the number of clusters K is known. The sets Lk ⊂ Vk,

k = 1, . . . ,K denote groups of nodes that are known a priori

to belong to cluster Vk, and L =
⋃K

k=1 Lk is the set of all

nodes with known cluster labels. We represent the cluster af-

filiation using the binary indicator matrix X ∈ {−1, 1}N×K

with Xik = 1 if node i belongs to cluster k and Xik = −1
otherwise. Hence, we have

∑
k Xik = −K + 2. The sym-

metry of the indicator values {−1, 1} about zero facilitates

the use of dissimilarity information. Let xi denote the rows

of X, i.e., X = (xT
1 , . . . ,x

T
N )T . We propose the following

novel definition for the signed TV of a multi-cluster indicator

matrix:

‖X‖TV =
∑

(i,j)∈Esim

‖xi − xj‖1|Wij |+
∑

(i,j)∈Edis

‖xi + xj‖+|Wij |

with

‖x‖+ =
∑

k

(xk)+ =
∑

k

max{0, xk} ,

and

Esim = {(i, j) : Wij > 0}, Edis = {(i, j) : Wij < 0},

for the set of the similarity and dissimilarity edges. Observe

that as opposed to the 1-norm, with the +-seminorm we have

‖xi + xj‖+ = 0 when dissimilar nodes are in the different

clusters (for Xik ∈ {−1, 1}). The metric ‖X‖TV is consis-

tent with the unsigned TV for multiple clusters used in [8].

The task of semi-supervised clustering using similarity

and dissimilarity edges and signed TV amounts to an expen-

sive combinatorial optimization problem. We thus propose

the following relaxation that replaces the condition Xik ∈
{−1, 1} by Xik ∈ [−1, 1]:

min
X

‖X‖TV s.t. X ∈ Q.

The constraint set reads

Q =
{
X ∈ [−1, 1]N×K :

Xik = 1 for i ∈ Lk,

Xik = −1 for i ∈ L\Lk,
∑

k

Xik = −K + 2 for i = 1, . . . , N
}
.

(2)

After finding the minimizer, node i is attributed to the cluster

for which Xik is maximal. For unsigned similarity graphs, a

similar approach (with additional terms favoring clusters of

similar size) achieves good clustering results [8].

3.2. Regularization

There are two other important issues which need to be specif-

ically addressed. First, the label sets may be separated out as

clusters when only relatively few labels are known. Second,

the TV tends to assign zero values since both (Xik +Xjk)+
and |Xik−Xjk| can be minimized by setting Xik = Xjk = 0,

thereby being penalized neither by similarity nor by dissimi-

larity edges. Both problems only occur when the number of

known labels is rather small. We resolve them by introducing

an ℓ1 norm regularization. Let us define the unlabeled similar

neighbors of a node i ∈ V by

N (i) = {j ∈ V\L : Wij > 0}.

Furthermore, for anyA ⊂ V we defineN (A) =
⋃

i∈AN (i).
The similarity neighborhood of Lk is denoted by

Nk =

{
n ∈ N (L) :

∑

k∈Lk

Wkn >
∑

l∈Ll

Wln for all l 6= k

}
.

(3)

We now exploit the fact that typically the majority of the

nodes in Nk will also belong to cluster k (i.e., Xjk = 1 for

j ∈ Nk and Xjk = −1 for j ∈ Nl, l 6= k). Since incorporat-

ing the cardinalities of these sets is difficult for optimization,

we use a convex ℓ1 relaxation, leading to the following opti-

mization problem for multiclass total variation clustering:

min
X∈Q

‖X‖TV +R(X), (4)

R(X) =

K∑

k=1

(
λk

∑

j∈Nk

|1−Xjk|+
∑

l 6=k

λl

∑

j∈Nl

|1+Xjk|
)
.

Here, Q is as in (2) and λ1, . . . , λK ≥ 0 are regularization

parameters which can be tuned automatically, see Section 4.

Similar regularization terms (termed “region force”) were re-

cently used in [9, 15].

4. ADMM FOR MULTICLASS TV CLUSTERING

Next, we show how to solve (4) in an efficient manner via the

augmented ADMM [16]. While the closely related (precon-

ditioned) primal-dual method (e.g., [17, 18]) appears to be an
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Algorithm 1 Multiclass signed TV clustering

Input: W, L1, . . . ,LK , λ1, . . . , λK

Initialization

1: determine W̃ via (5).

2: m = 0, Z
(0)
k = Z

(−1)
k = 0, ρ = 0.1

3: vi = 2
∑

j∈V (W̃
2
ij+W̃ 2

ji),

4: determineNk via (3)

5: X
(0)
nk =





1, n ∈ Lk ∪Nk

−1, n ∈
⋃
l 6=k

(Ll ∪Nl)

0, else

Iterations

6: repeat

7: Y
(m)
nk = div

W̃

(
2Z

(m)
k − Z

(m−1)
k

)
n

8: X̃
(m)
nk =

{
X

(m)
nk , n ∈ L

X
(m)
nk + 1

ρvn
Y

(m)
nk , else

9: yn = πM(X̃T en)

10: x
(m+1)
k = (y1k, . . . , yNk)

T

11: Z̃
(m+1)
k = Z

(m)
k + ρ∇

W̃
x
(m+1)
k

12: Z
k,(m+1)
ij ={
max

{
− 1,min

{
1, Z̃

k,(m+1)
ij

}}
, Wij > 0,

max
{
0,min

{
1, Z̃

k,(m+1)
ij

}}
, Wij < 0

13: m = m+ 1

14: until stopping criterion is satisfied

Output: X̂ = X(m)

appealing alternative, we prefer ADMM due to its well-tested

stopping criterion and varying penalty strategy [19].

As a first step, that also helps to understand the regular-

ization term R(X), we incorporate R(X) into the TV total

variation objective. This is accomplished by modifying the

weight matrix W. For each cluster k = 1, . . . ,K and each

node node j ∈ Nk we pick an anchor node lkj ∈ Lk with

Wlkjj ≥ 0 and define a new weight matrix W̃ ∈ R
N×N via

W̃ij =

{
Wij + λk, j ∈ Nk and i = lkj ,

Wij , else.
(5)

Note that since Wlkjj ≥ 0, this modification leaves the signs

of the edge weights unchanged. Since Xnk = 1 for n ∈ Lk
and Xnk = −1 for n ∈ L\Lk we can rewrite (4) as

min
X∈Q

∑

(i,j)∈Esim

‖xi − xj‖1|W̃ij |+
∑

(i,j)∈Edis

‖xi + xj‖+ |W̃ij |, (6)

which is the signed total variation of X with respect to the

modified weight matrix W̃ . This shows that the regularization

terms have the effect of increasing the edge weights from the

sampled nodes to their similarity neighborhood, thereby even

more forcing these nodes to end up in the same cluster.

To derive the update steps of the augmented ADMM ap-

plied to (4) (respectively (6)) we require the signed gradient

operator∇W : RN → R
N×N ,

(∇Wx)ij = (xi − Sijxj)|Wij |. (7)

Furthermore, we use the signed divergence operator divW :
R

N×N → R
N that can be derived (cf. [20]) as the negative

adjoint of the signed gradient operator (divW = −∇∗
W

):

(divW Z)i ,
∑

j∈V

|Wji|ZjiSji − |Wij |Zij . (8)

The update steps of the augmented ADMM applied to prob-

lem (4) are summarized in Algorithm 1. It should be under-

stood implicitly that statements made for a generic cluster in-

dex k are to be performed for all indices k = 1, . . . ,K . Step

9 of Algorithm 1 projects the rows of X̃ onto the set

M =

{
x : xk ≥ −1,

K∑

k=1

xk = 2−K

}
. (9)

Observe that πM(x̃) = πM+1(x̃ + 1) − 1 whereM + 1 =
{x : 0 ≤ xk and

∑
k xk = 2}. The projection ontoM + 1

can be solved efficiently in O(K logK) operations [21, 22].

For Algorithm 1 we use the stopping criterion and the varying

penalty strategy from [19] which are both based on the primal

and dual residuals (see also [11, 16]).

Complexity. The signed graph gradient (7) (step 11 of Al-

gorithm 1) and the signed divergence (8) (step 7) can be cal-

culated using the local neighborhood of a node (where W̃ij 6=
0). Thus their overall computation requires a number of op-

erations that scales linearly with the number of edges of the

graph. Furthermore, the matrices Z
(m)
k and Z̃

(m)
k are sparse

with non-zero elements at the row and column indices (i, j)

with W̃ij 6= 0. Since the steps 7, 11 and 12 have to be per-

formed for each cluster index k = 1, . . . ,K , their calculation

requires O(K|E|) operations. The calculation of X̃ in step 8

only requires O(KN) operations and is therefore governed

by the cost of steps 7, 11 and 12. The projection of one vector

onto M (respectively M + 1) requires O(K logK) opera-

tions [21]. Therefore the overall computational cost of one

iteration of Algorithm 1 is O(K|E|) + O(NK logK). We

underline that because all steps of Algorithm 1 can be calcu-

lated using only the local neighborhood of a node, the algo-

rithm can be implemented in a distributed manner (cf. [18]).

Therefore, our signed TV clustering method scales well and

is perfectly suited for handling large-dimensional datasets.

The overall per-node complexity of a fully distributed imple-

mentation is O(Kdmax) + O(K logK) (with dmax being the

maximum number of neighbors across the N nodes).
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Algorithm 2 Signed TV clustering with parameter tuning

Input: W, L1, . . . ,LK , xmin

Initialization: λ(m) =

{
0, for m = 1,

2m, for m > 1
m1 = m2 = · · · = mK = 1

1: repeat

2: λk = λ(mk)

3: X̂← Algorithm 1(W,L1, . . . ,LK , λ1, . . . , λK)

4: Mk = {n ∈ Nk : X̂nk > 0}

5: x̂k = minn∈Mk X̂nk

6: ifMk = ∅ or x̂k < xmin then

7: mk ← mk + 1, a = 1
8: end if

9: until a = 0

Output: X̂

Relaxation parameter adaptation. It remains to choose

the regularization parameters λ1, . . . , λK appropriately. Re-

call that the regularization was introduced in order to assign

Xnk = 1 to the majority of nodes n ∈ Nk and Xnk = −1
to the majority of nodes n ∈

⋃
l 6=kNl. In addition, the clus-

ter labels within the similarity neighborhoods should be close

to 1 in magnitude. These observations led us to tuning the

relaxation parameters according to Algorithm 2.

5. NUMERICAL EXPERIMENTS

We consider a dataset consisting of K noisy spirals: we cre-

ated N = 500 random vectors {u1, . . . ,uN} according to

(cf. [23])

un =

(
rn(cos(ϕn + (fn − 1)2π

K
))

rn(sin(ϕn + (fn − 1)2π
K
))

)
+ εn

where fn ∈ {1, . . . ,K} are randomly drawn cluster labels,

ϕn ∼ U(0, 4π/K) is a random angle, rn = (K
2ϕn

2π + 2)/2
is the radius and εn ∼ N (0, σ2I) is a Gaussian jitter with

σ2 = 0.045. A similarity graph was created using the k-

nearest-neighbor method [24] with k = 10 and edge weights

Wij = exp
(
−‖ui−uj‖22/κ

2
)

with κ2 = 0.72. For each pair

of clusters we then added P dissimilarity edges with weight

Wij = −10 between randomly chosen pairs of nodes, which

results in a total number of L = PK(K − 1)/2 dissimilarity

edges. We picked a set
⋃K

k=1 Lk of M = |L| known cluster

labels (chosen uniformly at random while ensuring at least

one known label from each cluster). We then clustered the

graph using our scheme (Algorithm 2) and the unsigned mul-

ticlass TV algorithm (UMTV) from [8]. The parameter xmin

of Algorithm 2 was set to xmin = 0.9.

The clustering performance is quantified by the percent-

age of mislabeled nodes among the set of nodes without prior

known label. Table 1 depicts the error rates (mean and stan-

dard deviation) obtained over 500 Monte-Carlo runs and dif-

ferent values of P , M and K . For the case where the num-

ber of known labels is small, Algorithm 2 clearly outper-

forms UMTV. With increasing number of samples the perfor-

mance difference diminishes and both algorithms deliver ac-

curate clustering results. We also observe that the inclusion of

only a single dissimilarity edge between each pair of clusters

already significantly improves the clustering accuracy. The

more dissimilarity edges there are, the more pronounced is

the performance advantage of our method. We emphasize

that UMTV optimizes for clusters of similar size; thus, we

expect an even more pronounced gain of Algorithm 2 versus

UMTV when cluster sizes vary. For a comparison between

the dissimilarity-based method in [6] and Algorithm 2 we re-

fer the interested reader to [11].

6. CONCLUSION

In this paper we incorporated dissimilarity into multiclass TV

clustering. We introduced ℓ1 regularization terms for the case

of few cluster labels. We showed that these terms have the ef-

fect of putting more emphasis on the given node labels by

increasing the weights of edges originating from the sam-

pled nodes. We derived an ADMM based algorithm which

can be implemented in a distributed environment. Our nu-

merical experiments demonstrated that our approach outper-

forms unsigned TV clustering, and hence, including dissimi-

larity information into multiclass TV clustering significantly

improves the accuracy of the results.

UMTV; K = 3 Algorithm 2; K = 3 UMTV; K = 5 Algorithm 2; K = 5

P = 0 P = 0 P = 1 P = 2 P = 0 P = 0 P = 1 P = 2

M = K 27.0± 16.6 9.4± 12.4 5.2± 9.4 3.7± 9.1 4.0± 6.1 3.2± 5.9 1.8± 4.2 1.4± 3.8
M = 2K 10.5± 13.3 5.0± 8.6 3.2± 6.9 1.8± 5.1 1.7± 3.9 2.0± 4.5 1.1± 3.3 0.7± 2.3
M = 5K 1.1± 4.0 1.5± 4.5 0.9± 3.1 0.6± 2.0 0.3± 1.1 0.3± 1.3 0.3± 1.5 0.2± 1.0

Table 1: Error rates in percent (mean and standard deviation) achieved by our scheme and UMTV from [8] for K = 3 and

K = 5 clusters and various numbers of dissimilarity edges P and known labels M .
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