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ABSTRACT
Many recent works on inference of graph structure assume that the
graph signals are fully observable. For large graphs with thousands
or millions of nodes, this entails high complexity on the data collec-
tion and processing steps. Here, we study a community inference
problem on partially observed (sub-sampled) graph signals which
sidesteps topology inference, while revealing the coarse structure of
the graph directly. Two variants of the inference task are studied: (i)
a blind method that infers the communities that the observable nodes
belong to; and (ii) a semi-blind method that infers the communities
of all nodes using, in addition, side information about the sub-graph
between observable and hidden nodes. These techniques for commu-
nity inference are shown to be efficient and suitable for large graphs
analytically and empirically.

Index Terms— topology inference, graph signal processing, com-
munity inference, hidden nodes

1. INTRODUCTION

With recent advents in network science, graph signal processing
(GSP), which is a formal extension of signal processing to irregularly
structured data, has emerged to be an effective technique for data
analytics. Many types of data such as actions/opinions of individu-
als, activity levels of regions in human brain, expression levels of
genes, are examples of graph signals where each record is a vector
of samples taken from nodes on a graph [1].

Graph signal data often arise from physical systems such as
social and biological networks, where prediction and control are
often desired. In these problems, inferring structural properties of
the graph, e.g., topology or community structure, from the available
graph signals is an important first step. A popular approach is to focus
on the topology inference problem and tackle the inference task as an
inverse problem. Compared to prior methods based on conditional
independence [2] or dynamics equations [3–6], the GSP-inspired
topology inference methods provide a unified way to infer graph
topology using data collected from complex dynamics. Prior works
show that it is possible to infer graph topology under conditions on
smoothness of observed signals [7–9], or full-rank input [10–12].
However, it is assumed that the graph signals are fully observable,
namely each node on the graph has to be sampled. For large graphs
with thousands of nodes, collecting and processing these graph signals
can be difficult due to the prohibitive computation complexity or
the overwhelming efforts spent on data collection. It is therefore
natural to consider the inference task with partially observed graph
signals, where only a subset of nodes are sampled. Here, we consider
an inference task with hidden nodes. While the signals on these
hidden nodes are not observed, their presence affects the inference
performance since they are connected to the observed nodes. Recently,

some progress has been made in characterizing the impact of hidden
nodes on the topology inference task [13], however the proposed
algorithms are either without theoretical guarantee [14], or requires
time series data to evaluate the time lag correlation matrix [15].

A common feature of social/biological networks is that they
admit a community structure where the graph can be partitioned
into densely connected clusters that are isolated from each other
[16]. Departing from topology inference, we focus on inferring
communities from graph signals, a problem which was first studied
by the authors in [17, 18]. The goal is to infer a partition of such
clusters while sidestepping topology inference. The intuition is that
community structure offers a compact description of the graph, and
therefore requires less information for its inference. As such, [18]
shows that accurate inference can be performed when all nodes are
observed even under the relaxed condition of low-rank graph signals,
a situation where previous methods are poised to fail.

Here we extend [18] by considering the community inference
problem under the impact of hidden nodes. In particular, we show
that community inference using partially observed graph signals can
be performed reliably while offering substantial reduction in compu-
tation complexity. The contributions of this paper are two-fold. First,
we derive conditions under which the communities inherited from the
complete graph can be inferred accurately from partially observed
graph signals, leading to a blind community inference method for
the observed nodes. Essentially, we prove that influences from the
hidden nodes are absorbed into a noise subspace which our inference
algorithm is agnostic to. Second, provided that side information
on the topology is given, we derive a low complexity technique us-
ing Nyström method [19, 20] for community inference of all nodes,
leading to a semi-blind community inference method.

Notations. We use boldfaced lower-case (upper-case) characters
to denote vectors (matrices). For a vector x ∈ Rn, [x]i denotes its
ith element. Diag(·) is the diagonalization operator that acts on a
vector, and (·)> denotes the vector/matrix transpose.

2. SYSTEM MODEL

Consider a network specified by an undirected graph G = (V,E)
where the node set is V = {1, ..., N}, and the edge set isE ⊂ V ×V .
The graph is defined by a symmetric adjacency matrix A ∈ RN×N+

where Aij > 0 if and only if (i, j) ∈ E. We focus on the scenario
in which the network contains K communities, which we define as
follows. Let C1, ..., CK be a partition of V into K non-overlapping
subsets. Consider the following modularity measure:

RatioCut(C1, ..., CK) :=
∑K
k=1

1
|Ck|

∑
i∈Ck

∑
j /∈Ck

Aij , (1)

which is the total weight of edges across subsets. We define

C?1 , . . . , C?K ∈ argminC1,...,CK RatioCut(C1, ..., CK), (2)
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as the optimal partition of V . The graphG is said to have a modularity
of δ? when RatioCut(C?1 , ..., C?K) = δ?. Throughout the paper, we
assume δ? ≈ 0 and each of C?k has similar size, such that the graph
has K (nearly) isolated, equal size components / communities1.

We are interested in the community inference problem, whose
aim is to infer the partition (2) from observations on nodes of G.
This is different from the community detection problem [16] which
tackles (2) provided that the graph structure is completely known.
Before describing our observation model, let L := Diag(A1)−A
be the Laplacian of G with the eigenvalue decomposition (EVD)
L = V ΛV >. Then, a square matrix HG ∈ RN×N is said to be
a graph related operator if it admits a singular value decomposition
(SVD) as:

HG = V Diag(h)U>, (3)
where h ∈ RN+ is a vector controlling the spectrum of HG (whose
order can be arbitrary), V is the orthogonal matrix containing the
eigenvectors of L, and U is an arbitrary orthogonal matrix. We
shall fix the order of the eigenvectors in V as V := (v1 · · ·vN )
where vi is the eigenvector with the ith smallest eigenvalue in L.
Examples of this operator include graph filters [22] in which HG

is a matrix polynomial of a graph shift operator (GSO) S such that
HG =

∑T−1
t=0 htS

t with the GSO taken as the Laplacian or Markov
matrix [18, 22–24] since if S = L, then HG = V

∑T−1
t=0 htΛ

tV >.
Consider a set of m graph signals, i.e., N -dimensional vectors

whose elements correspond to nodes of G, given by:

y` = y` +w` where y` = HGx
`, ` = 1, ...,m, (4)

where x` is an excitation graph signal and w` is a zero-mean, sub-
Gaussian independent noise vector. As noted by [18, 22–24], a wide
range of processes on networks, such as diffusion, opinion dynamics,
equilibrium of quadratic games, etc., can be described as the mapping
from x` to y` in (4) with an appropriate form for HG satisfying (3).
When N � 1, often times we only get to observe the graph signals
on a subset of nodes. Partition the node set into an observable and a
hidden part such that V = Vobs ∪ Vhid where Vobs = {1, ..., n} and
Vhid = {n+ 1, ..., N}. Accordingly, we partition A and y` as:

A :=

(
Ao,o Ao,h

Ah,o Ah,h

)
, y` :=

(
y`obs
y`hid

)
(5)

such that Ao,o (resp. Ah,h) correspond to the sub-graph induced by
Vobs (resp. Vhid), and Ao,h = A>h,o corresponds to the bipartite graph
between Vobs and Vhid. The signal y`obs (resp. y`hid) is observed from
Vobs (resp. Vhid). See the illustration in Fig. 1.

In this paper, we observe a set of n-dimensional signals
{y`obs}m`=1. In this setting performing community inference of
the graph G is difficult as observations on the N − n hidden nodes
are unknown. Under the premise that the number of communities, K,
in G is known, we consider two community inference tasks:
T1. (Blind community inference). We partition Vobs into C1obs, ..., CKobs

inherited from the original community of G, i.e., with Ckobs =
Vobs ∩ C?k for all k, using only the observed signals {y`obs}m`=1.
This is the closest community inference of G one could obtain
in the absence of knowledge about the hidden nodes.

T2. (Semi-blind community inference). We recover the full partition
(2) of V with the observed signals {y`obs}m`=1 and an estimate
on the bipartite graph between hidden and observable nodes,
Ah,o. For example, this side information is provided by an
external source who can estimate the sub-graph’s topology, e.g.,
via monitoring the tweets between users on Twitter.

1One may also define the community structure with other forms of modularity
measures such as [21].

C1 C2

Observable nodes Vobs

& sub-graph Ao,oSub-graph Ah,o

Hidden nodes Vhid & sub-graph Ah,h

Fig. 1. Illustration of the configuration of G with K = 2. The nodes
highlighted in orange are observable (Vobs), while the rest are hidden
(Vhid). Note that the sub-graphs Ao,o,Ah,h need not be connected.

If Vobs does not contain nodes from one of the communities, then it
is impossible to tackle T1 and/or T2 since only K − 1 communities
could be formed from Vobs. To avoid such situations, we require
that Vobs roughly samples an equal portion of nodes from all the K
communities, i.e., |C?k ∩ Vobs|/|Vobs| ≈ |C?k |/|V | for k = 1, ...,K,
e.g., with uniform sampling.

3. BLIND AND SEMI-BLIND COMMUNITY INFERENCE

To derive an inference method for the communities inG, let us borrow
some insights from community detection methods for tackling (2). In
particular, we observe that Problem (2) is equivalent to the discrete
optimization problem [25, Section 5.2]:

min
P∈RN×K

Tr(P>LP ) s.t. P>P = I, Pij ∈ {0,
1√
|Cj |
}, (6)

The binary constraint on Pij can be relaxed to yield a tractable
problem. Moreover, the optimal solution to the relaxed problem
is precisely the smallest K eigenvectors of the Laplacian, VK =
(v1 · · ·vK). To retrieve an approximate solution to (2), one applies a
K-means procedure on the row vectors of VK . This is the popular
spectral clustering method [25].

In our model (4), the Laplacian matrix L is unknown. Let x` be
zero mean and its covariance matrix be given by Cx. The covariance
matrix of the graph signal y` is then

Cnl = E[y`(y`)>] = V Diag(h)U>CxUDiag(h)V >. (7)

By inspection, if min{h1, ..., hK} � max{hK+1, ...., hN}, then
the top-K eigenvectors of Cnl are approximately VK (up to a rota-
tion), regardless of U and Cx. Using this intuition, our previous
work [18] proposed to infer communities from {y`}m`=1 by apply-
ing K-means on the top K eigenvectors of its sampled covariance
matrix Ĉy . In particular, [18] shows that this procedure successfully
infers the partition in (2) when HG is taken as a low-pass graph filter
defined on the Laplacian matrix [cf. Definition 1].

For large networks with N � 1, applying the method in [18] can
be unfavorable. For instance, estimating the (approximately) rank K
covariance matrix Cy = E[y`(y`)>] requires L = O(K) samples
for a fixed accuracy [26], each corresponding to acquiring the entire
N dimensional graph signal y`. This data acquisition procedure can
be difficult as one needs to sample the signal data on every node.
Moreover, estimating the covariance matrix and computing the top
K eigenvectors from it requires O(N2K) time for a fixed EVD
accuracy. It is undesirable as the runtime scales quadratically with N .
In the following, we show that these shortcomings can be overcome
through focusing on the partial graph signals {y`obs}m`=1.
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3.1. Blind Community Inference [cf. T1]

Denote the partitions of the eigenvectors of the Laplacian L as:

V :=

(
Vo

Vh

)
= (VK VN−K) =

(
Vo,K Vo,N−K
Vh,K Vh,N−K

)
, (8)

where Vo,K corresponds to the top n (observable) rows in the left
most K eigenvectors. As observed by [25], when the RatioCut of
the graph, δ?, is close to zero, Vo,K contains columns of indicator
vectors (with ±1 elements) of the communities for nodes in Vobs.
Under the regularity condition that |C?k ∩ Vobs|/|Vobs| ≈ |C?k |/|V |,
the columns of Vo,K will be roughly orthogonal. In particular, let
Vo,K = Qo,KRo,K denote the QR decomposition of Vo,K with
Qo,K ∈ Rn×K , we observe that Ro,K ∈ RK×K is close to diagonal.
Therefore, clustering the row vectors of Qo,K returns a partition of
Vobs inherited from the original communities (2).

Motivated by the above discussions, we estimate Qo,K from the
partially observed graph signals {y`obs}m`=1. To do so, we propose to
analyze the principal components of the sampled covariance matrix.
The latter is defined along with its EVD as:

Ĉo,o :=
1
m

∑m
`=1 y

`
obs(y

`
obs)
> = Q̂oΣ̂Q̂>o , (9)

where Σ̂ := Diag([σ̂1, ..., σ̂n]), with σ̂1 ≥ · · · ≥ σ̂n ≥ 0. To relate
Ĉo,o to Qo,K , from (7), the noiseless covariance matrix is:

Cnl
o,o := E[y`obs(y

`
obs)
>] = VoDiag(h)U>CxUDiag(h)V >o ,

(10)
where Ĉo,o ≈ Cnl

o,o when the noise w` is small. Consider the follow-
ing low-pass property for HG:

Definition 1 The graph-related operator HG is said to be (K, η)
low pass if its singular values satisfy

η :=
max{hK+1,...,hN}

min{h1,...,hK}
< 1 . (11)

The above property is borrowed from the low-pass graph filter prop-
erty studied in [18] and adapted to our setting of graph related oper-
ator. In the special case when HG is a graph filter, different cases
for achieving η ≈ 0 has been discussed in [18]. Intuitively, as G has
K communities, the condition requires the social/biological network
specified with G to diffuse information effectively among nodes that
belong to the same community.

Suppose that η ≈ 0 and using the decomposition Vo,K =
Qo,KRo,K , then Cnl

o,o ≈ Qo,KMQ>o,K for some K × K matrix
M , i.e., the top K eigenvectors of Cnl

o,o is approximately Qo,K (up
to a rotation). The above intuition is made precise by letting the top
K eigenvectors of Ĉo,o be Q̂o,K , and we observe:

Proposition 1 Suppose that the graph-related operator HG is
(K, η) low-pass, rank(U>KCx) = K, and we have

δ := λK(Cnl
o,o)− λK+1(C

nl
o,o)− ‖Ĉo,o −Cnl

o,o‖2 > 0, (12)

where UK is the first K columns of U , λK(X) denotes the Kth
largest eigenvalue of a matrix X . Then Q̂o,K satisfies

‖Q̂o,KQ̂>o,K −Qo,KQ>o,K‖F

= O
(√

K(max{h1,...,hK}
min{h1,...,hK}

η + δ−1‖Ĉo,o −Cnl
o,o‖2)

)
,

(13)

where O(·) hides the constant factors that are due to UK ,Cx.

The proofs in this section are omitted in the interest of space2. The
conditions in Proposition 1 can be justified as follows. First, it holds
in general that rank(U>KCx) = K as long as rank(Cx) ≥ K.
Second, (12) holds if the noise variance σ is small and the number
of samples L is sufficient. Precisely, when the noise vector w` is
sub-Gaussian with a covariance satisfying ‖E[w`(w`)>]‖2 ≤ σ,
then ‖Ĉo,o − Cnl

o,o‖2 converges to σ at a rate of O(
√
K/m) [26].

Proposition 1 thus shows that when HG is low-pass with η ≈ 0,
Q̂o,K approximates Qo,K up to a rotation. Our result implies that
influences from the hidden nodes are insignificant on Q̂o,K as they
are absorbed into the non-principal spectral components of Ĉo,o.

As a final step, we apply K-means on the row vectors of Q̂o,K ,
a procedure akin to applying spectral clustering on Ĉo,o, to obtain a
partition of Vobs as Ĉ1obs, ..., ĈKobs. The solution quality of the proposed
procedure can be characterized through:

Fobs(C1, ..., CK) :=
√∑K

k=1

∑
i∈Ck

∥∥qrow
i − 1

|Ck|
∑
j∈Ck

qrow
j

∥∥2
2
,

where qrow
i is the ith row of the matrix Qo,K . We then have the

following result:

Proposition 2 Suppose the conditions in Proposition 1 hold, and the
K-means algorithm outputs an (1 + ε) optimal solution3. Then

Fobs(Ĉ1obs, ..., ĈKobs)−
√
1 + ε min

C1,...,CK
Fobs(C1, ..., CK)

= O
(
(2 + ε)

√
K(max{h1,...,hK}

min{h1,...,hK}
η + 1

δ
‖Ĉo,o −Cnl

o,o‖2)
)
.

The left hand side of the above measures the gap between the ‘op-
timal’ partition of Vobs based on Qo,K and the partition inferred
from {y`obs}L`=1. The gap is small under the same set of desirable
conditions in Proposition 1. This shows that the inferred partition
Ĉ1obs, ..., ĈKobs approximates one that is based on the actual Qo,K .

Finally, we consider the special case when Vobs = V . We note
Qo,K = VK and therefore the proposition bounds the sub-optimality
of the partition Ĉ1obs, ..., ĈKobs with respect to spectral clustering on the
full Laplacian L. In fact, in this scenario, our bound recovers [18,
Theorem 1] with an extra factor of max{h1,...,hK}

min{h1,...,hK}
.

3.2. Semi-blind Community Inference [cf. T2]

Our next task is to infer the partition (2) of the graph G using
{y`obs}m`=1 and the partial adjacency matrix Ah,o. As argued be-
fore, for this task it suffices to estimate the K eigenvectors in VK .
Observe from the previous section that one can readily obtain Q̂o,K

by performing a top-K EVD on Ĉo,o, which satisfies, up to a ro-
tation and diagonal scaling, that Q̂o,K ≈ Qo,K ≈ Vo,K under
the conditions in Proposition 1 and the regularity condition that
|C?k ∩ Vobs|/|Vobs| ≈ |C?k |/|V |. Our challenge lies in how to in-
corporate the side information Ah,o for estimating VK .

To this end, the Nyström method is effective for approximating
the top (largest) eigenvectors of a large matrix [19, 20]. However, we
note that the desired VK corresponds to the smallest eigenvalues of
L only. To apply the Nyström method, we consider L̃ := λNI −L
with λN = λmax(L), which is a positive semidefinite matrix where
VK are now the top K eigenvectors. In particular,∑

j∈V L̃ij [vk]j = (λN − λk)[vk]i, i ∈ V, k ∈ [K] , (14)

2See: www1.se.cuhk.edu.hk/˜htwai/pdf/nystrom_app.pdf
3Using the data points Qo,K as input, it finds a partition C1, ..., CK with

Fobs(C
1
, ..., CK) ≤ (1 + ε)minC1,...,CK Fobs(C1, ..., CK), see [27].
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where L̃ij is the (i, j)th element of L̃, vk is the kth column vector
of VK with eigenvalue λk. As it holds that Q̂o,K ≈ Vo,K where an
approximation of [vk]i is available for all i ∈ Vobs, substituting this
into (14) gives the Nyström extension [19]:

[v̂k]i ≈ 1
λN−λk

∑
j∈Vobs

L̃ij [q̂k]j , i ∈ Vhid , (15)

where q̂k is the kth column vector of Q̂o,K . Furthermore, the graph
hasK communities, we have λk � λK+1 ≤ λN and λN−λk ≈ λN
for all k = 1, ...,K [25]. Therefore, together with the fact that
L̃ij = Aij for i ∈ Vhid, j ∈ Vobs, an approximation of VK is:

V̂K :=

(
Q̂o,K

λ̂−1
N Ah,oQ̂o,K

)
, λ̂N :=

1>Ah,o1

N − n . (16)

To tackle T2, we simply infer the partition (2) by performing K-
means clustering on the row vectors of V̂K .

Obviously, the accuracy of the Nyström method depends on the
ratio between the number of observable nodes n and the network size
N . In the simulations, we show that reasonable performance can be
attained by observing a small fraction (20%–30%) of the nodes.

3.3. Computation Complexity
The proposed methods for T1 and T2 are based on the top-K EVD
of the sampled covariance matrix in (9). As it requires m = O(K)
to obtain a reliable estimation, with a naive implementation, the
computation complexity for forming the estimate and the EVD step is
O(n2K) for a fixed accuracy. For T1, using the K-means algorithm
in [27] outputs an (1+ε) optimal solution in timeO(2(K/ε)

O(1)

Kn),
i.e., it is dominated by the EVD step. With a moderate K, the overall
complexity of tackling T1 is O(n2K). For T2, the Nyström step
(16) takes an additional time O(nnz(Ah,o)K) where nnz(Ah,o) is
the number of non-zeros in the matrix Ah,o. This is negligible when
the graph is sparse. On the other hand, the K-means step requires
O(2(K/ε)

O(1)

KN). With a moderate K, the overall complexity is
O(n2K + 2(K/ε)

O(1)

KN), i.e., linear in N .
Overall, the proposed methods are efficient in terms of data

acquisition and computation. Particularly, estimating the covariance
matrix Ĉo,o requires only samples of n-dimensional graph signals,
and the overall computation complexity of T2 is significantly lower
than that of [18] since it is only quadratic in n (with n� N ).

4. NUMERICAL EXPERIMENTS

We verify the claims in this paper using synthetic data. Through-
out this section, the undirected graphs are generated according to a
stochastic block model (SBM) G ∼ SBM(N,K, a, b) such that G
has N = 150 nodes and K = 3 communities, with 0 ≤ b < a ≤ 1
where a = 8 logN/N (resp. b = logN/(2N)) is the connection
probability between nodes in the same community (resp. different
communities). Weights on the adjacency matrix A are assigned to
be 1 if (i, j) ∈ E, or 0 if otherwise. For the data model (4), we
focus on the diffusion process with HG = (I − αL)M and α =
(1/2)‖A1‖−1

∞ ; the excitation signal satisfies E[x`(x`)>] = BB>

where B ∈ RN×R is set withN (0, 1) elements and R = 10 to sim-
ulate a situation with low-rank excitations in which previous methods
will fail even when all nodes are observable. Notice that the low pass
parameter is η =

( 1−αλK+1

1−αλK

)M , i.e., decreasing to zero exponen-
tially with M . The set of observable nodes Vobs is selected uniformly
from [N ]. We observe m = 50 samples with the noise vector gen-
erated through w` ∼ N (0, 10−1I). The results are averaged over

5 10 15 20 25 30 35
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E
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Cluster. Vo,K (n = 50)
Cluster. Qo,K (n = 50)
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Proposed (n = 20)
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Fig. 2. Error rate performance comparison for task T1 against the
number of diffusion steps M . Dashed lines refer to the noiseless
setting with direct observation on Cnl

o,o [cf. (10)].
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Fig. 3. Performance comparison for task T2 against |Vobs| = n.
Dashed lines refer to the noiseless setting with observation on Cnl

o,o.

5, 000 trials and we used the built in kmeans function of MATLAB
for the K-means procedure required in our method.
T1. Community inference of G[Vobs]: In this example, we focus
on the performance of tackling T1, where the inferred communities
Ĉ1obs, ..., ĈKobs are compared against the ground truth in generating the
SBMs, e.g., C?1 ∩ Vobs, ..., C?K ∩ Vobs. The numerical results are re-
ported in Fig. 2, which plots the error rate of the inferred community
against the number of diffusion steps M elapsed before collecting
each sample and we have fixed |Vobs| = n ∈ {20, 50, 80}. As ob-
served, the identical performance between clustering on Vo,K and
Qo,K justifies the observation made before Proposition 2 that it suf-
fices to estimate Qo,K . This is further corroborated by the improved
performance of the proposed methods with increasing M . We remark
that the performance of our method for this task is insensitive to the
size of observable nodes n as we observe similar performance over
different values of n.
T2. Community inference of G: In this example, we consider tack-
ling T2 with the Nystrom extension based method. Here, the goal
is to infer the ground truth partition of nodes as generated from the
SBM. We report the numerical results in Fig. 3, which shows the
error rate against the number of observed nodes n. As expected, the
error rate decreases as the number of observable nodes n increases. It
improves to a reasonable level when n ≈ 40, which is less than 30%
of the nodes. Furthermore, the result suggests that the performance
can be affected by the first stage in estimating Qo,K , as the error rate
decreases with increased M .

5. CONCLUSION
In this paper, we have studied several techniques for community in-
ference from observations of the graph signals on a subset of nodes,
providing an estimate of the coarse network structure. Despite the
influences from hidden nodes, we showed that the inference is accu-
rate as long as the graph related operator is low-pass. The proposed
methods are efficient for networks with a large number of nodes.
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