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ABSTRACT
Performance of the reconstruction algorithms in compressed
sensing largely depends on the characteristics of measure-
ment matrices. As such, the construction and analysis of
the measurement matrix is of paramount interest. In this pa-
per, for the first time, we focus on the class of sparse sens-
ing matrices with (non-negative) integer entries. This prob-
lem, among other applications, is particularly motivated by
the constraint of measuring gene regulatory expressions. We
study randomly generated matrices from the integer family
and analyze their properties in terms of the covariance and
RIP constant. We derive bounds for the coherence and RIP
constant of such measurement matrices. Further, apart from
the coherence, we find that the RIP constant is closely related
to the minimum non-diagonal entry ρn in the covariance ma-
trix, which is rarely studied before.

1. INTRODUCTION
In Compressive Sensing (CS) [1,2], a signal x which is sparse
in some domain is reconstructed from a (relatively) small set
of linear measurements with potentially some noise n, y =
Ax + n. This requires 1) developing a reconstruction algo-
rithm to recover or estimate x from y, and 2) constructing
a practical sensing matrix A. The performance of the recon-
struction algorithm is highly determined by the characteristics
of the sensing matrix. Hence, in this paper, we focus on the
construction and analysis of sensing matrices.
Here, we consider the class of sparse sensing matrices with
non-negative integer entries. This is particularly motivated
by the constraint on the construction of the sensing matrix in
many application such as measuring gene expressions. For
example, consider the problem of designing a sensory sys-
tem for miRNAs’ concentrations in disease detection appli-
cations [3, 4]. One viable approach is to design a biological
plasmid with binding sites [5] onto which miRNAs will attach
to. Each bio-sensor then would be a collection of handful of
these biological plasmids using which we can get reading on
the concentration of a miRNA. Hence, if the output of the j-th
biological plasmid is proportional to the concentration of the
j-th miRNA, i.e., oj = gjxj , and the i-th sensor consists of
nij such plasmids, then the aggregate reading of the sensor
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would be approximately1

yi =
∑
j

nij(gjxj) + ni. (1)

Moreover, the number of different sensing biological plas-
mids in each bio- sensor would be limited due to the prac-
tical constraints such as available space and implementation
issues.
In this paper, we consider the class of sensing systems given
by (1). Especially, we provide a quantitative analysis of the
performance of the sensing system and provide a computa-
tionally inexpensive upper bound for the RIP constant. In
[6, 7], the binary sensing matrices are modeled as the LDPC
parity-check matrices and deterministic construction methods
are proposed. In [6] the author studied sensing matrix in the
view of RIP constant [1] while [7] considered the null-space
characterization [1]. In [8], the authors proposed to create the
sensing matrix by permuting a binary block matrix, which is
efficient and simple for hardware implementation. In [9], the
binary sensing matrix is generated randomly according to the
Bernoulli distribution. Then, a non-linear recovery algorithm
was proposed, which can recover the signal in near-optimal
times.
Our contributions can be summarized as followings:
• Because of the constraints on the sensor construction

for miRNA sensing, we model the sensing matrix A
as a sparse (non-negative) integer matrix. Further, due
to the spatial limitation, each sensor only consists of a
limited number of different biological plasmids and the
majority of entries in each row of A are zero.
• We analyze the performance of the sparse integer sens-

ing matrix A. We consider random construction of
such a sensing system and first study its covariance ma-
trix [1]. Then, inspired by [6, 10, 11], we provide an
upper bound for RIP-constant [1]. Note that the de-
rived bound holds even when the sparse integer sensing
matrix is constructed deterministically rather than ran-
domly.

2. SYSTEM MODEL
As already mentioned in Section 1, we assumed that each
sensor is constructed by aggregating a handful of biological

1Here, we ignored the interaction of a sensing unit with non-target miR-
NAs.
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plasmids (see (1)). Hence, the linear sensing model can be
rewritten as

y = AGx = Ax̃, (2)
where A ∈ Zm×n+ is determined by the number of biological
plasmids of the j-th kind used by the i-th sensor, i.e., Aij =
nij , G := diag(g1, . . . , gN ) is a diagonal gain matrix and
x̃ = Gx is the scaled signal.
For the simplicity of analysis, we assume Aij’s are generated
randomly, independent of others, according to

P (Aij = 0) = 1− p, P (Aij = s) = p/M, 1 ≤ s ≤M,

whereM is the maximum value in A, i.e., maximum number
of each biological plasmids in a sensor, and p (0 < p < 1)
controls the sparsity of matrix.

3. COHERENCE
In this section, we study the characteristics of the covariance
matrix [1] of the resulting sensing matrix.
Definition (Covariance matrix Σ). The covariance matrix
Σ ∈ Rn×n of the sensing matrix A ∈ Rm×n is defined as

Σij =
|〈Ai,Aj〉|
‖Ai‖2‖Aj‖2

,

where Σij is the (i, j)-th entry of matrix Σ, and Ai denotes
the ith columns of A.

Obviously, Σii = 1. Let ρ1 = maxi6=j Σij and ρn =
mini6=j Σij . In CS theory, ρ1 is known as the coherence [1].
It is known that in the noiseless measurements, the k-
sparse signal x can be recovered accurately provided that
ρ1 ≤ 1

2k−1 [1]. Further, as we will show later, ρn is closely
related to the recovery performance, which is rarely studied
before.
In the following, we provide probabilistic bounds on ρ1 and
ρn by analyzing the covariance matrix Σ. For this purpose,
the key is to study

〈Ai,Aj〉
‖Ai‖2‖Aj‖2

=

m∑
k=1

Aki
‖Ai‖2

Akj
‖Aj‖2

.

Note that although Aki and Akj are independent, the term
‖Ai‖2‖Aj‖2 in the denominator makes the summands de-
pendent and the analysis of the coherence challenging. To
overcome this issue, we first study and bound the norm of an
arbitrary column, ‖Ai‖2. Then we bound the maximum and
minimum inner products between any two arbitrary columns
of A.

3.1. Norm of arbitrary columns

In this subsection, we study the norm ‖Ai‖22 and its concen-
tration behavior, which is described by the following lemma

Lemma 1. For an arbitrary δ, 0 < δ < 1, define

P1(δ) := min

{
exp

(
−2δ2 s2

mM4

)
, e−mp

(
emp

s(1− δ)

)s(1−δ)}
,

P2(δ) := min

{
exp

(
−2δ2 s2

mM4

)
, e−mp

(
empM2

s(1 + δ)

) s(1+δ)

M2
}
.

Then, for any arbitrary column a of the sensing matrix A,
we have

P
{
‖a‖22 ≤ (1− δ)s

}
≤ P1(δ),

P
{
‖a‖22 ≥ (1 + δ)s

}
≤ P2(δ).

Proof. Let S =
∑
j a

2
j where aj is the j-th element of vector

a. Note that ES = s and using Hoeffding’s inequality [12],
for arbitrary t > 0,

P {S − s ≥ t} ≤ exp(− 2t2

mM4
). (3)

However, this bound might not be tight enough as the sparse
probability p is not incorporated and mM4 in the denomina-
tor can become too large.
In the following, we seek alternative approaches to bound
P {|S − s| ≥ t} more accurately. First, note that

P {S − s ≥ t} = P
{

exp [λ(S − s)] ≥ eλt
}

≤e−λ(t+s)E exp

(
λ

m∑
j=1

a2j

)
= e−λ(t+s)

m∏
j=1

Eeλa
2
j

(a)
= e−λ(t+s)

(
Eeλa

2
j

)m (b)

≤ e−λ(t+s)
(

1− p+ peλM
2
)m

,

where (a) is because of the independence of aj , and (b) is
because Eeλa

2
j ≤ 1−p+peλM

2

, which can be easily checked.
Choosing λ as M−2 log t+s

mpM2 , we have

P {S − ES ≥ t} ≤ e−mp
(
empM2

t+ s

)(t+s)/M2

. (4)

Note that the term e−mp in this bound is the dominant term
for practical choices of M and p, causing the probability to
decrease rapidly.
Similarly, an upper bound for probability P{S ≤ ES− t}, for
0 < t < ES = s, can be obtained as

P {S − ES ≤ −t} ≤ e−mp
[
emp

s− t

]s−t
. (5)

Combining (3), (4), and (5), we complete the proof. �

Lemma 1 shows that ‖Ai‖22 is concentrated around its ex-
pected value and the probability of deviation drops rapidly.
Therefore, analyzing ρ1 and ρn approximately reduces to in-
vestigating the maximum and minimum of inner products,
i.e., maxi 6=j〈Ai,Aj〉 and mini 6=j〈Ai,Aj〉.

3.2. Maximum of inner product
In this subsection, we bound the maximum inner product
〈Ai,Aj〉, (i 6= j). To achieve this, we first bound the
expected value of maxi6=j〈Ai,Aj〉 and then bound the prob-
ability of deviating from the expected value.

Lemma 2. Define C(λ) = 1− p2 +
(
p
M

)2 eλ(1−eM2λ)
1−eλ . Then

Emax
i6=j
〈Ai,Aj〉 ≤ inf

λ>0

1

λ

[
log

(
n

2

)
+m logC(λ)

]
. (6)
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Proof. Define the index set T := {(i, j) : 1 ≤ i < j ≤ n}
and random variable Zk,s=(s1,s2) := Ak,s1Ak,s2 , where 1 ≤
k ≤ m and s = (s1, s2) ∈ T . LetZ := maxs∈T

∑m
k=1 Zk,s.

Then,

eλEZ ≤ EeλZ ≤
∑
s∈T

Eeλ
∑m
k=1 Zk,s =

∑
s∈T

(
EeλZ1,s

)m
,

where the first inequality is due to the convexity of exp(·).
Taking log(·), we obtain

EZ ≤ inf
λ>0

1

λ

[
log
∑
s∈T

(
EeλZk,s

)m]
︸ ︷︷ ︸
≤log (n2)+m log EeλZk,s

.

To prove the lemma, it is enough to bound EeλZk,s for an
arbitrary k and s ∈ T . Note that by the definition

EeλZk,s = 1− p2 +
( p
M

)2 M∑
a1=1

M∑
a2=1

eλa1a2

(c)

≤ 1− p2 +
( p
M

)2
e−Mλ

M∑
a1=1

eλa1
M∑
a2=1

eλMa2

︸ ︷︷ ︸
eλ(1−eM2λ)/(1−eλ)

,

where (c) is due to the fact that

(k1 −M)(k2 − 1) ≤ 0 =⇒ k1k2 ≤ k1 +Mk2 −M.

Note that this relaxation is tight when M = 1, the case of
binary measurement matrix. �

The following lemma bounds the probability of exceeding
maxi 6=j〈Ai,Aj〉 from its expected value.

Lemma 3. Using the same notations as the previous lemma,
we have

P

{
Z ≥ inf

λ>0

1

λ

[
log

(
n

2

)
+m logC(λ)

]
+ t

}
≤ e−2t2/mM4

.

Proof. Note that for a fixed s ∈ T , Zk,s’s are independent
of each other for different values of k. Define ak,s := 0 and
bk,s := M2. Obviously, we have ak,s ≤ Zk,s ≤ bk,s, ∀ 1 ≤
k ≤ m. From [12, Thm. 12.1], we conclude that

logEeλ(Z−EZ) ≤ V λ2

8
,

where V is defined as V =
∑m
k=1 sups∈T (bk,s − ak,s)2 =

mM4. Therefore, for an arbitrary λ > 0, using Markov in-
equality results in

P{Z − EZ ≥ t} ≤ e−λtEeλ(Z−EZ) ≤ emM
4λ2/8−λt.

Setting λ = 4t/mM2 and using Lemma 2, we have com-
pleted the proof. �

3.3. Minimum of inner product
In this subsection, we analyze the minimum of the inner prod-
uct mini 6=j〈Ai,Aj〉 in a similar way as Subsection 3.2.
Lemma 4. Expectation of mini 6=j〈Ai,Aj〉 is lower bounded
by

Emin
i6=j
〈Ai,Aj〉 ≥

mpm

Mm−2
.

Proof. For arbitrary λ ≥ 0,

Emin
i 6=j
〈Ai,Aj〉 = Emin

i6=j

m∑
k=1

AkiAkj ≥
m∑
k=1

Emin
i 6=j

AkiAkj ,

for an arbitrary k (and hence, column Ak). For the simplicity
of our proof, we fix k and denote the elements {Aki}mi=1 in
column Ai as {ai}mi=1. For each set {ai}mi=1, we define a
coupled set {ãi}mi=1 as{

ã1 = · · · = ãm = 0, ∃ ai 6= M ;

ãi = · · · = ãm = M, otherwise.

Easily, we can prove infi 6=j aiaj ≥ infi 6=j ãiãj = ã2, where
ã is an arbitrary element from {ãi}mi=1. Hence, we have

E inf
i 6=j

aiaj ≥ Eã2i = pmM2/Mm,

and then complete the proof of E infi 6=j〈Ai,Aj〉 ≥ mpm

Mm−2 .
�Lemma 5. For infi6=j〈Ai,Aj〉, we have

P
{

inf
i6=j
〈Ai,Aj〉 ≤

mpm

Mm−2
− t
}
≤ exp

(
−2t2/mM4) .

Proof. Define random variable Z = supi6=j −〈Ai,Aj〉. We
can verify that − infi 6=j〈Ai,Aj〉 = Z. Then we get

P
{

inf
i 6=j
〈Ai,Aj〉 ≤

mpm

Mm−2
− t
}

≤ P
{

inf
i 6=j
〈Ai,Aj〉 ≤ E inf

i 6=j
〈Ai,Aj〉 − t

}
= P {Z − EZ ≥ t} .

Similar to the above, we construct ak,s = −M2 and bk,s = 0,
and verify that ak,s ≤ Z ≤ bk,s. Then we have

P{Z − EZ ≥ t} ≤ exp
(
−2t2/mM4

)
, (7)

which completes the proof via combining above together.
�

Combining the results from the previous three subsections,
we obtain bounds for ρ1 and ρn as:
Theorem 6. For ρ1 and ρn, we have

P

{
ρ1 ≤

infλ>0
1
λ

[
log
(
n
2

)
+m logC(λ)

]
(1− δ) s

}

≥ [1− P1(δ)]×
[
1− e−

2t2

mM4

]
,

P
{
ρn ≥

mpm

Mm−2(1 + δ) s

}
≥ [1− P2(δ)]

[
1− e−

2t2

mM4

]
,

where P1(δ) and P2(δ) are defined in Lemma 1.

In the following section, we will relate these two constants to
the RIP constant [1], another widely used concept in CS.

4. ANALYSIS OF RIP CONSTANT

In this section, we investigate the RIP constant δk [1] associ-
ated with the random measurement matrix A.

Definition (RIP constant, δk). The RIP-constant associated
with a matrix A is defined as the minimum δk ∈ [0, 1] that
satisfies

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22,
for all k-sparse signals, i.e., x ∈ Rn and ‖x‖0 ≤ k.
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The accuracy of recovered signal x̂ from noisy measurements
through matrix A is closely related to δ2k, as follows [1,2,13].
Let αk and βk be the minimum and maximum singular values
of an arbitrary sub-matrix A(k) ∈ Rm×k of A, then the RIP

constant can be calculated as [1, 13] δk =
β2
k−α

2
k

β2
k+α

2
k
.

In the following subsection, we study bounds on the αk and
βk, which corresponds to the minimum and maximum singu-
lar values, respectively.
4.1. Minimum singular value
In this subsection, we study the minimum singular value αk.
Consider an arbitrary sub-matrix A(k) and its associated co-
variance matrix, Σ(k) (as defined in Section III). Let B(k)

be defined as A(k) with normalized columns, i.e., the i-th
column is given as B(k),i = A(k),i/‖A(k),i‖2. Obviously,
Σ(k) = BT

(k)B(k) and

‖A(k)x‖22 ≥ (min ‖A(k),i‖2)2 ‖B(k)x‖22.
Therefore, αk ≥

√
σmin(Σ(k)) mini ‖A(k),i‖2, where σmin(·)

denotes the minimum eigenvalue.

Lemma 7. The minimum eigenvalue of A(k) satisfies

σmin(Σ(k)) ≥ 1− ρn +
k(ρn − ρ1)

2
.

Proof. As in [6], we denote the eigenvector correspond-
ing to the smallest eigenvalue of Σ(k) as xe, i.e., xe =

argminx∈Sk−1 xTΣ(k)x, where Sk−1 is the k-dimensional
unit-sphere. Decompose xe into [xp xn], where xp denotes
the positive part of xe and xn is the remaining. Hence, xexT

e ,
can be decomposed as[

xpx
T
p xnx

T
p

xpx
T
n xnx

T
n

]
.

Clearly, the entries in both xpx
T
p and xnx

T
n are all positive,

while the entries of the other two sub-matrices are negative.
Define D := Σ(k) − (1− ρn)I and rearrange it as

D =

[
D(pp) D(pn)

D(np) D(nn)

]
,

where the sub-matrices correspond to xpx
T
p , xpxT

n, xnxT
p ,

and xnx
T
n, respectively. Similarly, construct D̃ as

D̃ =

[
ρn1 ρ11
ρ11 ρn1

]
=

[
D̃(pp) D̃(pn)

D̃(np) D̃(nn)

]
,

where 1 denotes an all-one matrix of an appropriate size such
that the sub-matrices in D and D̃ have the same size. It can
be easily verified that D̃(pp) ≤ D(pp) and D̃(nn) ≤ D(nn),
which corresponds to positive entries in xex

T
e . Similarly,

D̃(np) ≥ D(np) and D̃(pn) ≥ D(pn), corresponding to the
non-positive terms in xex

T
e . Therefore, xT

e (D − D̃)xe ≥ 0,
and
σmin(D̃) = min

x∈Sk−1
xTD̃x ≤ xT

e D̃xe ≤ xT
eDxe = σmin(D).

To calculate σmin(D̃), first, note that rank(D̃) = 2 and

‖D̃‖2F =
∑rank(D̃)
i=1 σ2

i (D̃). Therefore,

σ2
max(D̃) + σ2

min(D̃) = ρ2n(k21 + k22) + 2ρ21k1k2, (8)

where k1 and k2 are the lengths of xp and xn, respectively.
On the other hand,

trace(D̃) = σmax(D̃) + σmin(D̃) = ρn(k1 + k2). (9)
Solving for σmin from (8) and (9) results in

σmin(D̃) =
ρnk −

√
ρ2nk2 + 4k1k2(ρ21 − ρ2n)

2
.

Note that as k1 + k2 = k, we have σmin(D) ≥ σmin(D̃) ≥
k(ρn−ρ1)

2 , where the equality holds when k1 = k2 = k
2 . Fi-

nally, by the definition of D,

σmin(Σ(k)) = 1− ρn + σmin(D) ≥ 1− ρn +
k(ρn − ρ1)

2
,

which completes the proof. �

4.2. Maximum singular value

Analyzing the maximum singular value is similar as the pre-
vious section. Note that

‖A(k)x‖22 ≤ (max ‖A(k),i‖2)2 ‖B(k)x‖22,

hence, β2
k ≤ σmax(Σ(k)) max ‖A(k),i‖22.

Lemma 8. The maximum singular value can be bounded as

β2
k = σmax(Σ(k)) ≤ 1− ρ1 + ρ1k.

Proof. Define D := Σ(k)−(1−ρ1)I and consider the princi-
pal eigenvector xE corresponding to maximum eigenvalue of
Σ(k), i.e., xE = argmaxx∈Sk−1 xTΣ(k)x. Construct matrix
D̃ as

D̃ =

[
ρ11 ρn1
ρn1 ρ11

]
.

Following similar argument as Lemma 7, we get

σmax(D̃) ≥ xT
ED̃xE ≥ xT

EDxE = σmax(D).

Hence, we have σmax(Σ(k)) = σmax (D)+1−ρ1 ≤ σmax(D̃)+

1− ρ1, where σmax(D̃) is given by

σmax(D̃) =
ρ1k +

√
ρ21k

2 − 4k1k2(ρ21 − ρ2n)

2
≤ ρ1k.

Therefore, σmax(Σ(k)) ≤ 1− ρ1 + ρ1k. �

Combining the results for αk and βk, the following theorem
for the RIP constant of sparse-integer sensing matrix can be
obtained:
Theorem 9. For an arbitrary δ > 0, with probability at least
[1 − P1(δ)][1 − P2(δ)][1 − exp(−2δ2s/mM2)]2, the R.I.P.
constant δk is bounded as

δk ≤
2δ + ρ1(kδ − 3/2δ + k − 1/2)− (k/2− 1)(1− δ)ρn
2 + ρ1(kδ − 1/2δ + k − 3/2) + (k/2− 1)(1− δ)ρn

.

5. CONCLUSIONS

In this paper, motivated by biological miRNA sensing sys-
tems, we have studied sparse-integer sensing matrices. We
derived bounds for the covariance matrix and the RIP con-
stant of the sensing matrix. These bounds can then be used to
estimate the number of sensors, m, for reliable signal recov-
ery.

4926



6. REFERENCES

[1] Simon Foucart and Holger Rauhut, A mathematical in-
troduction to compressive sensing, vol. 1, Birkhäuser
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