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ABSTRACT
In this paper, we propose a new linearly involved convexity-
preserving model for signal recovery by extending the idea
in the generalized minimax concave (GMC) penalty [Se-
lesnick’17]. The proposed model can use nonconvex penal-
ties but maintain the overall convexity and is applicable to
much more general scenarios of signal recovery than the
original GMC model. We also propose a new iterative al-
gorithm which has theoretical guarantee of convergence to a
global minimizer of the proposed model. A numerical exper-
iment for noise suppression shows excellent edge-preserving
performance of the proposed smoother in comparison with
the standard convex TV smoother.

Index Terms— Signal recovery, nonconvex penalty, gen-
eralized minimax concave penalty function, linearly involved
convexity-preserving model, nonexpansive operator

1. INTRODUCTION

Many methods for sparsity aware signal recovery rely on the
following type of optimization problems:

minimize
x∈Rn

J(x) :=
1

2
∥y −Ax∥2 + µψ(x), µ > 0, (1)

where y ∈ Rm, A ∈ Rm×n, and ψ : Rn → R is a cer-
tain sparsity promoting function. The ℓ1 norm, ∥x∥1 :=∑n

i=1 |xi|, has been used extensively as ψ, e.g., in LASSO [1]
because it is the convex envelope of ℓ0 pseudo-norm in the
vicinity of 0 ∈ Rn. Nevertheless, it has been often reported
that certain nonconvex penalty functions approximate ℓ0
pseudo-norm better than ℓ1 norm does and that the solutions
of the optimization problem (1) with such nonconvex penal-
ties ψ result in better signal recovery [2–5]. However, the
computation of a global minimizer of (1) has been challeng-
ing because the overall convexity of J in (1) is not guaranteed
in general. To overcome the computational difficulty, in
problem (1), caused by such nonconvex penalties, convexity-
preserving nonconvex penalties were introduced originally
by Blake, Zisserman, and Nikolova [6–8]. Remarkably,
convexity-preserving nonconvex penalties can maintain the
overall convexity of J in (1) under certain conditions. For
recent developments of the convexity-preserving nonconvex

penalties, see [9–12] and references therein. Most of these
works rely on the presence of a strongly convex term, which
corresponds to the assumption for nonsingularity of ATA
in the scenario of (1). An exceptional example which is
free from such an assumption is found in the generalized
minimax concave (GMC) penalty function1 ΨB in [15] with
B ∈ Rm×n (see Fact 1). Indeed, for any A ∈ Rm×n, ΨB

can maintain the overall convexity of J in (1) with appro-
priate choice of B (see Fact 1(b)). In [15], to demonstrate
the effectiveness of the GMC penalty, an iterative algorithm
was proposed for problem (1) with ψ = ΨB but it is applica-
ble only to a particular case satisfying BTB = (θ/µ)ATA,
0 ≤ θ ≤ 1.

In this paper, we consider linearly involved model:

minimize
x∈Rn

JL(x) :=
1

2
∥y−Ax∥2+µψ ◦L(x), µ > 0, (2)

where the dimension of the domain of ψ is properly adjusted
to Rl for L ∈ Rl×n. Note that, even in the case of con-
vex penalty ψ, algorithmic strategies for problem (2) require
much more elaborated idea than those for problem (1) (see,
e.g., the art of proximal-splitting techniques in [16–18]). A
typical example of this model is found in an edge-preserving
smoothing model:

minimize
x∈Rn

JD(x) :=
1

2
∥y−Ax∥2+µψ◦D(x), µ > 0, (3)

where D ∈ R(n−1)×n is the first-order finite difference oper-
ator defined as

D :=

−1 1
. . . . . .

−1 1

 ∈ R(n−1)×n. (4)

If we employ ψ(·) = ∥ · ∥1, the ψ ◦ D is nothing but the to-
tal variation (TV) [19] and (3) is the so-called TV smoother
used widely as a convex edge-preserving smoother. A ques-
tion arises: can we establish a more effective edge-preserving
smoother than the TV smoother by employing ΨB in place of
∥ · ∥1?

1The GMC penalty function ΨB is a generalization of the so-called min-
imax concave (MC) penalty function [4] (see also [13,14]). In fact, ΨB with
BTB = βIn (β ∈ R+) reproduces the MC penalty function.
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To answer this question2, we first present a condition for
the overall convexity of the linearly involved model:

minimize
x∈Rn

1

2
∥y −Ax∥2 + µΨB ◦ L(x), µ > 0. (5)

Under this condition, i.e., linearly involved convexity-preserving
condition (see Proposition 1), we also propose a new itera-
tive algorithm (Algorithm 1) for problem (5) for general B.
The proposed algorithm is designed in a way similar to an
idea behind the primal-dual splitting method [22–24] and has
theoretical guarantee of convergence to a global minimizer
of (5). The proposed algorithm is applicable to much wider
nonconvex penalty than the algorithm introduced in [15].

To demonstrate the effectiveness of the proposed linearly
involved convexity-preserving model (5) and Algorithm 1,
we present a numerical experiment in a scenario of edge-
preserving smoother, i.e., L = D in (4). The numerical ex-
ample shows that the proposed smoother has excellent edge-
preserving performance in comparison with the convex TV
smoother.

2. PRELIMINARIES

2.1. Notation

Let N, R, R+, and R++ be the sets of natural numbers, real
numbers, nonnegative real numbers, and positive real num-
bers, respectively. Bold face small letters express vectors.
The superscript (·)T denotes transpose. For a vector x :=
(x1, x2, . . . , xn) ∈ Rn, we use ∥x∥p := (

∑n
i=1 |xi|p)1/p (0 <

p < ∞), ∥x∥∞ := max{|x1|, . . . , |xn|}, and ∥x∥0 :=
#{i ∈ N ∩ [1, n] | xi ̸= 0}. For a matrix A ∈ Rm×n,
A† ∈ Rn×m stands for the Moore-Penrose pseudo inverse of
A, and ∥A∥2 := max∥x∥2≤1 ∥Ax∥2 is given by the maximum
singular value of A. Om×n ∈ Rm×n and On ∈ Rn×n stand
for the zero matrices, and In ∈ Rn×n the identity matrix.
The positive definiteness and positive semidefiniteness of a
symmetric matrix A ∈ Rn×n are expressed respectively as
A ≻ On and A ⪰ On. For any A ≻ On, by defining an inner
product ⟨·, ·⟩A : Rn × Rn → R : (x,y) 7→ xTAy and its
induced norm ∥x∥A :=

√
⟨x,x⟩A, (Rn, ⟨·, ·⟩A, ∥x∥A) be-

comes a real Hilbert space whose identity operator is denoted
by Id. The set of all proper lower semicontinuous convex
functions is denoted by Γ0(Rn) [16].

2.2. Generalized Minimax Concave (GMC) Penalty

The generalized minimax concave (GMC) penalty func-
tion [15] was introduced as a sparsity-promoting non-convex
penalty function.

2In a recent paper [20], we have found a positive but a partial answer,
to this question, where the authors reported that the model (3) with ψ =
ΨB in a special case (A,BTB) = (In, βIn−1) (β ∈ R+) shows superior
denoising performance not only to (i) the model (3) with ψ = ∥ · ∥1 but also
to (ii) the Moreau-enhanced TV denoising in [21].

Fact 1 (Properties of GMC penalty function [15]). For a
given B ∈ Rm×n, the GMC penalty function ΨB : Rn → R+

defined as

ΨB(x) := ∥x∥1 − min
v∈Rn

[
∥v∥1 +

1

2
∥B(x− v)∥2

]
satisfies the following properties:

(a) (Nonconvexity [15, Corollary 2]) ΨB(x) = ∥x∥1 −
1
2∥Bx∥2 if and only if ∥BTBx∥∞ ≤ 1. This implies that
ΨB = ∥ · ∥1 if B = Om×n, and ΨB is nonconvex otherwise.

(b) (Convexity-preserving property [15, Theorem 1])
For (A,B, µ,y) ∈ Rm×n×Rm×n×R++×Rm satisfying

ATA− µBTB ⪰ On, 1
2∥y −A(·)∥2 + µΨB(·) ∈ Γ0(Rn).

3. CONVEXITY-EDGE-PRESERVING SMOOTHER
WITH GMC PENALTY

3.1. Linearly involved convexity-preserving model for
signal recovery

To broaden the applicability of the GMC penalty, we propose

ΨB ◦ L : Rn → R+ (6)

as a penalty with B ∈ Rm×l and L ∈ Rl×n of rank(L) = l.
For example, if we choose L = D in (4) andB = Om×(n−1),
ΨB ◦ D reproduces the total variation which has been used
widely for convex edge-preserving smoother. This means
that ΨB ◦ D with B ̸= Om×(n−1) can serve as a noncon-
vex penalty for convexity-edge-preserving smoother.

Definition 1. ΨB ◦ L in (6) is said to satisfy the linearly in-
volved convexity-preserving condition for (A,µ) ∈ Rm×n ×
R++ if

(∀y ∈ Rm)
1

2
∥y −A(·)∥2 + µΨB ◦ L(·) ∈ Γ0(Rn).

Proposition 1. For ΨB ◦ L in (6), the following are equiva-
lent:

(a) ΨB ◦ L satisfies the linearly involved convexity-
preserving condition for (A,µ) ∈ Rm×n × R++.

(b) ATA− µLTBTBL ⪰ On.
(c)ATA−µL̃T[Ol×(n−l) Il]

TBTB[Ol×(n−l) Il]L̃ ⪰ On,
where L̃ ∈ Rn×n is any nonsingular matrix satisfying

[Ol×(n−l) Il]L̃ := L. (7)

Remark that Proposition 1 is not only a generalization but also
a refinement of Fact 1(b) because (a) ⇔ (b) in Proposition 1
for L = In reproduces ATA − µBTB ⪰ On ⇔ 1

2∥y −
A(·)∥2 + µΨB(·) ∈ Γ0(Rn).

Proposition 2. For (A,L, µ) ∈ Rm×n × Rl×n × R++, let

B =
√
θ/µΛ1/2UT, θ ∈ [0, 1],

where UΛUT := ÃT
2 Ã2−ÃT

2 Ã1(Ã
T
1 Ã1)

†ÃT
1 Ã2 ∈ Rl×l is an

eigendecomposition with [Ã1 Ã2] := A(L̃)−1 ∈ Rm×n for L̃
in (7). Then ΨB ◦ L satisfies the linearly involved convexity-
preserving condition for (A,µ).
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By applying Proposition 2 to (A,L, µ) = (A,D, µ),
we obtain a novel nonconvex penalty for convexity-edge-
preserving smoother. For example, a simplest choice of L̃ in
(7) is given by

L̃ = D̃ :=
[
e1 |DT

]T ∈ Rn×n, (8)

where e1 ∈ Rn is the vector whose 1st component is 1 and
whose remaining components are zero.

Now our target is the following convex optimization prob-
lem:
Problem 1 (Linearly involved convexity-preserving model).
Suppose that ΨB ◦ L in (6) satisfies the linearly involved
convexity-preserving condition in Definition 1 for (A,µ) ∈
Rm×n × R++. Then for a given y ∈ Rm,

find x⋆∈S :=argmin
x∈Rn

[
1

2
∥y −Ax∥2+µΨB ◦ L(x)

]
.

3.2. How to solve the linearly involved convexity-preserving
model
Remark that we cannot apply standard proximal-splitting
techniques in [16] to Problem 1 because of the nonconvexity
of ΨB . To establish an iterative algorithm for Problem 1, we
first characterize the solution set S in terms of the fixed point
set of a nonexpansive operator in a way similar to an idea
behind the primal-dual splitting method [22–24].
Theorem 1 (Nonexpansive operator TLCP). In Problem 1,
define TLCP : Rn ×Rl ×Rl → Rn ×Rl ×Rl : (x,v,w) 7→
(ξ, ζ,η) by

ξ :=

[
In − 1

σ
(ATA− µLTBTBL)

]
x

− µ

σ
LTBTBv − µ

σ
LTw +

1

σ
ATy,

ζ := Softµ
τ

[
2µ

τ
BTBLξ − µ

τ
BTBLx+

(
Il −

µ

τ
BTB

)
v

]
,

η := P[−1,1]l (2Lξ − Lx+w) ,

where (σ, τ) ∈ R++ × R++, and

Softµ
τ
(x)i :=

{
0, if |xi| ≤ µ

τ ,

(|xi| − µ
τ )

xi

|xi| , otherwise,
(9)

P[−1,1]l(x)i :=

{
xi, if |xi| ≤ 1,
xi

|xi| , otherwise.
(10)

Then we have:
(a) S = Q(Fix(TLCP)), where Q : H := Rn×Rl×Rl →

Rn : (x,v,w) 7→ x, and Fix(TLCP) := {(x,v,w) ∈ H |
TLCP(x,v,w) = (x,v,w)}.

(b) Choose (σ, τ, κ) ∈ R++ × R++ × (1,∞) satisfying3

3For example, any (σ, τ, κ) ∈ R++ × R++ × (1,∞) chosen as σ = ∥κ
2
ATA+ µLTL∥22 + (κ− 1) > 0,

τ = (κ
2
+ 2

κ
)µ∥BTB∥22 + (κ− 1) > 0,

κ > 1,

(11)

satisfies (12).

Algorithm 1 for Problem 1.
Choose (x0, v0, w0) ∈ Rn × Rl × Rl.
Let (σ, τ, κ) ∈ R++ × R++ × (1,∞) satisfying (12).

▷ See also (11) for selections of (σ, τ, κ).
Define P as in (13).
k ← 0.
Do
xk+1←

[
In − 1

σ
(ATA− µLTBTBL)

]
xk

−µ
σ
LTBTBvk − µ

σ
LTwk + 1

σ
ATy

vk+1←Softµ
τ

[
2µ
τ
BTBLxk+1 − µ

τ
BTBLxk +

(
Il − µ

τ
BTB

)
vk

]
▷ Softµ

τ
is defined in (9).

wk+1←P[−1,1]l (2Lxk+1 − Lxk +wk)

▷ P[−1,1]l is defined in (10).
k ← k + 1

while ∥(xk,vk,wk)− (xk−1,vk−1,wk−1)∥P is not sufficiently small
return xk σIn − µ2

τ L
T(BTB)2L− µLTL ≻ On,

σIn − κ
2A

TA− µLTL ⪰ On,
τ ≥

(
κ
2 + 2

κ

)
µ∥BTB∥22.

(12)

Then

P :=

 σIn −µLTBTB −µLT

−µBTBL τ Il Ol

−µL Ol µIl

 ≻ On+2l (13)

and TLCP is κ
2κ−1 -averaged nonexpansive [17] in the Hilbert

space (H, ⟨·, ·⟩P , ∥ · ∥P), i.e., for any z1, z2 ∈ H,

κ− 1

κ
∥(Id− TLCP)(z1)− (Id− TLCP)(z2)∥2P

≤∥z1 − z2∥2P − ∥TLCP(z1)− TLCP(z2)∥2P .

Now, by applying Fact 2 in Appendix to TLCP in Theo-
rem 1, we obtain an iterative algorithm for Problem 1.

Theorem 2 (Proposed algorithm and its convergence). As-
sume the conditions in Problem 1 and Theorem 1. Then for
any initial point (x0,v0,w0) ∈ Rn × Rl × Rl, the sequence
(xk,vk,wk)k∈N ⊂ Rn × Rl × Rl generated by

(xk+1,vk+1,wk+1) = TLCP(xk,vk,wk)

converges to a point (x⋆,v⋆,w⋆) ∈ Fix(TLCP) and

lim
k→∞

xk = x⋆ ∈ S.

4. NUMERICAL EXPERIMENT

To demonstrate the effectiveness of the proposed linearly
involved convexity-preserving model, we present a numer-
ical experiment in a scenario of convexity-edge-preserving
smoother by considering Problem 1 with L = D under the
following settings. Entries of A ∈ R100×128 are drawn from
i.i.d. zero-mean white Gaussian noise with unit variance. The
observation y ∈ R100 is generated by y = Ax⋆ + ε, where
x⋆ ∈ R128 is the piecewise constant signal (Fig. 3: dotted)
and ε ∈ R100 is additive white Gaussian noise. The signal-to-
noise ratio (SNR) is 15dB. We compared two penalties: one is
ΨOm×l

◦D which reproduces the standard convex TV penalty,
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Fig. 1: MSE for the proposed model (red) and the standard convex TV (blue)
after k = 20, 000 iterations. µprop and µTV denote the parameter µ in
Problem 1 for the proposed model and the standard convex TV, respectively.
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Fig. 2: SE versus iterations for the proposed model (red) and the standard
convex TV (blue).

the other is the proposed linearly involved convexity-edge-
preserving penalty ΨB◦D obtained by applying Proposition 2
with L̃ in (8) and θ = 0.9 to (A,D, µ). Algorithm 1 with
(11) of κ = 1.001 is applied to the optimization problems.

Fig. 1 shows dependency of recovering performance on
the parameter µ in Problem 1. The performance is measured
by mean squared error (MSE) defined as the average of

squared error (SE): ∥xk − x⋆∥2

over 100 independent realizations of the additive noise. From
Fig. 1, we can see that (i) both methods have fair robust-
ness against choice of µ, (ii) the proposed convexity-edge-
preserving smoother using B ̸= Om×l outperforms the stan-
dard convex TV smoother in the quality of the recovered sig-
nal, and (iii) the best weights of the penalties of both methods
are respectively µprop := 750 for the proposed convexity-
edge-preserving smoother and µTV := 65 for the standard
convex TV smoother.

Fig. 2 shows dependency of the SE on the number of iter-
ations under weights (µprop, µTV). Although the recovering
is slow possibly due to the nonconvexity of ΨB ◦ D, over-
whelming accuracy of the approximation is archived by the
proposed method in the end.

Fig. 3 shows the recovered signals by these methods after
20, 000 iterations. The proposed convexity-edge-preserving
smoother can maintain much more successfully the sharp
edges than the standard convex TV smoother, which also
results in excellent noise suppression depicted in Fig.4.
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Fig. 3: Entries in piecewise constant signal (x⋆: dotted black), recovered
by the proposed model (xprop: red), and by the standard convex TV (xTV:
blue)
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Fig. 4: Entries in y − Ax⋆ (dotted black), Axprop − Ax⋆ (red), and
AxTV −Ax⋆ (blue), for x⋆, xprop, and xTV in Fig.3.

5. CONCLUDING REMARK

We have shown a necessary and sufficient condition for lin-
early involved convexity-preserving in Problem 1 (see Propo-
sition 1). Under this general condition, we have also pre-
sented a new iterative algorithm (see Algorithm 1). The pro-
posed algorithm has theoretical guarantee of convergence to a
global minimizer of Problem 1 (see Theorem 2). A numerical
example, in a scenario of edge-preserving smoother, shows
that the proposed smoother has excellent edge-preserving
performance in comparison with the standard convex TV
smoother.

Appendix
Fact 2 (Krasnosel’skiı̆-Mann Iteration [25] [16, Section 5.2] for
Finding a Fixed Point of Nonexpansive Operator ). Let (H, ⟨·, ·⟩H, ∥·
∥H) be a real Hilbert space. Let T : H → H be a nonexpansive
operator, i.e.,

∥T (z1)− T (z2)∥H ≤ ∥z1 − z2∥H (∀z1, z2 ∈ H),

and Fix(T ) := {z ∈ H | T (z) = z} ̸= ∅. Then for any initial
point z0 ∈ H, the sequence (zk)k∈N generated by

zk+1 = [(1− αk)Id + αkT ](zk)

converges weakly to a point in Fix(T ) if (αk)k∈N ⊂ [0, 1] satisfies∑
k∈N αk(1−αk) = ∞. In particular, if T is α-averaged for some

α ∈ (0, 1), the sequence (zk)k∈N generated by a simple iteration

zk+1 = T (zk)

converges weakly to a point in Fix(T ).
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