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ABSTRACT

Non-convex penalties outperform the convex `1-norm, but gen-
erally sacrifice the cost function convexity. As a middle ground,
we propose a framework to design non-convex penalties that induce
sparsity more effectively than the `1-norm, but without sacrificing
the cost function convexity. The non-smooth non-convex regular-
izers are constructed by subtracting from the non-smooth convex
penalty its smoothed version. We propose a generalized infimal
convolution smoothing smoothing technique to obtain the smoothed
version. We call the proposed framework sharpening sparse regu-
larizers (SSR) to imply its advantages compared to convex and non-
convex regularizers. The SSR framework is applicable to any spar-
sity regularized ill-posed linear inverse problem. Furthermore, it re-
covers and generalizes several non-convex penalties in the literature
as special cases. The SSR-RLS problem can be formulated as a sad-
dle point problem, and solved by a scalable generalized primal-dual
algorithm. The effectiveness of the SSR framework is demonstrated
by numerical experiments.

Index Terms— Sparsity, convex analysis, convex optimization,
non-convexity, smoothing.

1. INTRODUCTION

Sparse approximation is a prominent theme in numerous signal and
image processing applications. This is due to the fact that high-
dimensional signals often admit a lower dimension representation
[1]. Mathematically, the problem can be stated as finding an approx-
imate solution x ∈ Rn to a system of linear equations Ax = y,
where A ∈ Rm×n is the measurement matrix. Sparse approxima-
tion is formulated as a regularized least squares (RLS) problem

inf
x
F (x) = (1/2)‖y −Ax‖22 + λΨ(Wx) (1)

where λ > 0 is a regularization parameter, Ψ is a sparsity-inducing
regularizer, andW ∈ Rp×n is an analysis matrix such as the Fourier
transform, gradient (total variation, TV), wavelet transform, or data-
based transforms. To obtain the sparsest solution, the regularizer
should ideally be the `0 pseudo-norm, but the resultant problem is
NP-hard. Often, the `1-norm is used as a convex surrogate. The `1-
RLS problem is known as LASSO [2]. Nonetheless, the `1-norm ex-
hibits solution bias, since it underestimates high amplitude compo-
nents. To rectify this issue, many prior works proposed non-convex
penalties and algorithms [3–6]. However, the use of non-convex
penalties usually yields a cost function that is not convex, thus global
optimality is not guaranteed.

In this paper, we seek a middle ground between convex and
non-convex penalties. This is accomplished by proposing a gen-
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eral framework to design non-convex penalties which effectively in-
duce sparsity while preserving convexity of the cost function. The
proposed framework is general and flexible, as it is applicable to a
wide range of settings such as arbitrary matrices A (does not need
to be injective nor surjective) and W . Furthermore, it generates new
penalties as well as recovering and generalizing several well known
non-convex penalties in the literature such as MC [3], generalized
MC (GMC) [7], logarithm [4], and exponential [8].

The proposed framework relies on the synergy between sparsity-
inducing convex penalties and their smoothed function. In fact, the
proposed non-convex regularizers are formed by subtracting from
the non-smooth convex penalty its smoothed version. In order to ob-
tain the smoothed version, we propose a smoothing technique which
we call a generalized infimal convolution smoothing (GICS) tech-
nique using convex analysis. The GICS technique is a generalization
of the classical infimal convolution smoothing [9]. Smoothing tech-
niques are usually motivated for algorithmic purposes [9–11], how-
ever, this work takes advantage of the connection between smoothing
and sparsity-inducing regularizer. We call proposed the framework
sharpening sparse regularizers (SSR) to imply its pros compared to
sparsity-inducing convex and non-convex regularizers.

The development of convexity-preserving non-convex penalties
was pioneered by Blake, Zisserman, and Nikolova [12–14], and fur-
ther improved in [15–19]. However, these penalties are separable
which makes them ineffective in case the Hessian of the data fidelity
term, AT A, is singular. Recently, for the case when W = I in
(1), we proposed the GMC penalty as a non-separable non-convex
regularizer defined using convex analysis [7]. In addition, the GMC
concept was partially applied to the total variation denoising prob-
lem [20]. Compared to previous work, the SSR framework can gen-
erate new non-separable penalties, thus no restrictions on A are im-
posed. Furthermore, the GMC penalty turns out to be a special case
of the SSR framework.

The SSR-RLS problem can be formulated as a saddle point prob-
lem and solved by a scalable generalized primal-dual algorithm. Nu-
merical experiments illustrates the effectiveness of the SSR frame-
work on different examples. The proofs are omitted due to space
limitations and will be given in a future full-length paper.

2. BACKGROUND

2.1. Convex Analysis Preliminaries

For readers’ convenience, we provide a brief summary of con-
vex analysis, for more detailed discussion see [21–23]. In this
work, we focus on the class of extended-real-valued function
that are proper lower semicontinuous (lsc) convex donated as
Γ0(Rn) = {f : Rn → R ∪ {±∞} | f proper, lsc and convex}.
The Legendre-Fenchel transform, or conjugate function f∗ is an
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important tool in convex analysis that is defined as

f∗(u) = sup
x

{
xTu− f(x)

}
(2)

note that f = f∗∗ if and only if f ∈ Γ0(Rn) [23]. The epi-
multiplication operation and its conjugate are defined as

fµ(·) = µf(·/µ), (fµ)∗ = µf∗ (3)

where µ > 0. Furthermore, the infimal convolution of two proper
functions f1 and f2 is defined as

(f1� f2)(x) = inf
v
{f1(v) + f2(x− v)} . (4)

It is insightful to consider of infimal convolution and Fenchel conju-
gate as an analogy of the convolution integral and Fourier transform
in signal processing [24] . In fact, the conjugate of the infimal con-
volution is given as

(f1� f2)∗ = f∗
1 + f∗

2 . (5)

2.2. Smoothing

Smoothing of non-smooth functions is usually motivated for algo-
rithmic purposes when solving non-smooth optimization problems
[9–11]. In this paper, contrary to the classical motivation, smoothing
is employed to generate non-convex sparse penalties. Before dis-
cussing the relation between sparsity-inducing convex penalties and
smoothing, we provide a concise summary of smoothing techniques.

The Moreau envelope or Moreau-Yosida regularization is a tra-
ditional smoothing approach defined as

hMµ (x) , inf
v

{
h(v) + 1/(2µ)‖x− v‖22

}
. (6)

The Moreau envelope has many nice properties, e.g., if f ∈ Γ0(Rn)
then fMµ is convex continuous, finite-valued, differentiable with con-
tinuous Lipschitz gradient, and fMµ ∈ Γ0(Rn) [23]. As a classi-
cal example, the Moreau envelope of the absolute value function,
f(x) = |x|, is the Huber function [25] which is given as

hMµ (x) = Hµ(x) =

{
x2/(2µ) |x| 6 µ
|x| − µ/2 |x| > µ.

(7)

Several smoothing approaches that generalize Moreau envelope
were proposed in the literature such as Nesterov’s [11] and infi-
mal convolution smoothing [9]. Towards our end goal of designing
sparsity-inducing non-convex penalties, we propose a generalized
smoothing technique.

3. SHARPENING SPARSE REGULARIZERS

The SSR framework depends on the synergy between sparsity-
inducing convex penalties and smoothing. The designed penalties
are defined by subtracting from the sparse non-smooth convex
penalty its smoothed version. As an example, the minimax-concave
(MC) penalty can be written as

ΨMC
µ (x) = ‖x‖1 −

n∑
i=1

Hµ(xi). (8)

where Hµ is the Huber function (7).
We propose a generalized infimal convolution smoothing (GICS)

technique that includes the Huber function as a special case. The

proposed smoothing technique an extension to the classical infimal
convolution smoothing [9]. Then, we define the SSR framework
penalty as

ΨB
µ (Wx) , ‖Wx‖1 − h̃µ,B(x) (9)

where h̃µ,B is defined in (11) as the GICS smoothing of ‖Wx‖1.
Next, we formularize this concept and provide various examples and
interpretations.

Definition 1 Let the convex regularizer be

h(x) = ‖Wx‖1 (10)

and B ∈ Rq×n be the steering matrix, φ : R → R be a smooth-
ing kernel that is a convex function continuously differentiable with
Lipschitz gradient constant 1/σ (σ > 0), and without loss of gen-
erality let minz φ

∗(z) = 0. Then, we define the generalized infimal
convolution smoothing (GICS) as

h̃µ,B(x) , inf
v
{h(v) + Φµ (B(x− v))} (11)

, (h � (Φµ ◦B)) (x) (12)

where Φ(Bx) ,
∑q
i=1 φ(bTi x), and Φµ is the epi-multiplication

operation defined in (3)

It is straight forward to see that if B = I , the GICS reduces
to the plain infimal convolution smoothing [9]. Our generalization
is non-trivial in the context of generating non-seperable non-convex
penalties that preserve convexity even if the data fidelity term Hes-
sian,ATA, is singular. Furthermore, if φ(x) = (1/2)x2, then GICS
gives the Moreau envelope (6), and more interestingly, the GICS re-
covers the generalized Huber function as a special case [7].

3.1. Properties

Here we show properties of GICS smoothing (11), and consequently
the SSR penalty (9). The following proposition addresses the con-
ditions under which the GISC inherits the interesting properties of
Moreau envelope.

Proposition 1 Let the smoothing kernel φ be coercive andN (W )∩
N (B) = {0}. Then, the infimal convolution of GICS (11) is exact
(i.e., for any x the infimum is attained for some v), and h̃µ,B is con-
vex continuous, finite-valued, which implies that h̃µ,B ∈ Γ0(Rn).

Besides the infimal convolution formulation, an equivalent rep-
resentation of GICS is the Fenchel conjugate or dual formulation
using the property (5).

Proposition 2 Given the properties of GICS in Proposition 1, GICS
can be rewritten in a Fenchel conjugate or dual formulation

h̃µ,B(x) = sup
z

{
zTBx− h∗(BT z)− µΦ∗(z)

}
(13)

As expected, when B = I , then the GICS dual formulation in (13)
reduces to the Nesterov’s smoothing [11]. We next address the gra-
dient of GICS.

Proposition 3 Let v?µ,B(x) and z?µ,B(x) be the solutions of the in-
fimal convolution (11) and the dual (13) formulations, respectively.
Then, the GICS technique, h̃µ,B , is differentiable and the gradient is
obtained as

∇h̃µ,B(x) = BT z?µ,B(x) = BT∇Φµ
(
B(x− v?µ,B(x))

)
(14)

with Lipschitz constant L̃µ,B = ‖B‖22/(µσ).
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(b) The smoothing h̃µ,I , µ = 2.
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(c) The SSR penalty, µ = 2.
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(d) The proximal operators with
γ = 1, µ = 1.5.

Fig. 1: Examples of non-convex sparse penalties generated by the
proposed SSR framework.

Interestingly, when B = I and φ(x) = (1/2)x2, then (14) reduces
to the celebrated proximal operator identity

µ proxµ−1h∗(x/µ) = x− proxµh(x) (15)

where v?µ,I = proxµh and z?µ,I = proxµ−1h∗ .
Furthermore, we can show that GISC has the following upper

and lower bounds properties

0 6 h̃µ,B(x) 6 ‖Wx‖1, (16)

consequently, the SSR framework penalties have the following
bounds

0 6 ΨB
µ (Wx) 6 ‖Wx‖1. (17)

3.2. Examples and Interpretations

Figures 1(a) shows the contour of `1-norm and two non-convex
penalties, MC and logarithm, that are recovered by the SSR as spe-
cial cases. Note that the edges of non-convex penalties are sharper
than the `1-norm unit ball, thus, the name sharpening spare regular-
izers (SSR).

In order to demonstrate the generalization power of the SSR
framework, consider the simple case of B = W = I . Figures 1(b)
and 1(c) illustrates several examples of the the smoothed functions
h̃Iµ,I and non-convex sparse penalties ΨI

µ. These penalties are ob-
tained by varying the smoothing kernel φ. The framework is capable
of recovering several well known non-convex sparse penalties in the
literature such as minimax concave (MC) [3], logarithm [4] and ex-
ponential [8] penalties. In addition, it generates new non-convex
sparse penalties that are based on log-sum-exp, error function, and
inverse tangent function. That is, the SSR framework is a unified
approach for creating non-convex sparse-inducing penalties.

Moreover, looking at the corresponding proximal operator of
each penalty provides further insight. The proximal operator for a

proper lsc function g : Rn → R ∪ {±∞} and parameter γ > 0 is
defined as

proxγh(x) = arg min
v

{
h(v) + 1/(2γ)‖x− v‖22

}
(18)

The next proposition shows the condition under which proxγΨBµ
is

single-valued.

Proposition 4 The operator proxγΨBµ
is well-defined, and is a

single-valued mapping if and only if µσ/‖B‖22 > γ.

Figure 1(d) shows the proximal operators of the previous examples.
Observe that proxγΨIµ

approximates the hard-thresholding operator
(proxγ `0 ) better than the soft-thresholding operator (proxγ `1 ). In
fact, as µ→∞, we have that proxγΨIµ

→ proxγ `1 .

3.3. Convexity conditions

One of the main advantages of the SSR framework is that despite
using non-convex penalties, it can preserve the convexity of the cost
function (1), thus global convergence can be obtained. The next the-
orem addresses the condition under which the linear inverse problem
(1) with SSR penalty remains convex.

Theorem 1 Consider a regularized least square linear inverse prob-
lem (1) with SSR penalty (9). Then, the cost function

F (x) = (1/2)‖y −Ax‖22 + λΨB
µ (Wx) (19)

is convex if

(1/2)‖y −Ax‖22 −
λ

2σµ
‖Bx‖22 is convex, (20)

i.e., the data fidelity term is λ/(σµ)-strongly convex relative to
(1/2) ‖Bx‖22.

Note in particular that the data fidelity term does not need to be
strongly convex (singular A is allowed). Instead, the requirement is
relaxed using the steering matrix, B, which introduces non-convex
penalties along directions where there is additional curvature to ex-
ploit. In other words, relative strong convexity of the data fidelity
term is required [26,27], but not classical strong convexity. The con-
vexity condition (20) can be rewritten as

ATA � λ/(σµ)BTB. (21)

This suggests it is reasonable to select B as a scaled version of A
such as B =

√
γσµ/λ A, where 0 6 γ 6 1 is a non-convexity

parameter. This selection is not necessarily the best, better selection
schemes are on our search agenda.

Remark 1 The SSR framework penalty ΨB
µ will generally be non-

separable when the steering matrix B is non-diagonal. This non-
separability is a requirement to be able to introduce non-convexity
and maintain the cost function convexity. Without this property,
whenever A is singular, the only sparse penalty that preserves the
cost function convexity is the convex `1-norm.
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Fig. 2: Sparse deconvolution example.

4. OPTIMIZATION ALGORITHMS

The SSR regularizer (9) does not always have a closed-form for ar-
bitrary W , B, and φ. Similarly, evaluating the SSR gradient (14) or
proximal operator (18) requires solving an optimization problem at
each iteration. Nonetheless, given the convexity condition are sat-
isfied, the RLS linear inverse problem (1) with SSR regularizer can
be solved globally using an efficient first-order algorithm, which is
based on a generalization of the primal-dual algorithms [28,29]. The
optimization algorithm is based on reformulating the SSR-RLS as a
saddle-point problem such as

inf
x

sup
v
{L(x, v) + λ (‖Wx‖1 − ‖Wv‖1)} (22)

where L(x, v) = (1/2)‖y − Ax‖22 − λΦµ(B(x − v)) is a differ-
entiable function, convex in x and concave in v. The only required
assumption is that ‖Wx‖1 has an efficient proximal operator, e.g.,
`1-norm, 1D-TV, or tight frame W . This problem structure lends it-
self to the generalization of the classical primal-dual algorithm [29].
In case the proximal operator can not be efficiently computed, other
efficient forward-backward algorithms can used, but this is beyond
the scope of this paper.

5. NUMERICAL EXAMPLES

The first example considers sparse deconvolution. The original
sparse signal x is generated from a mixed Bernoulli-double Pareto
distribution as shown in Figure 2(a). Then, the signal is filtered
with a 5th-order bandpass FIR with linear phase and corrupted with
zero mean Gaussian noise. We let the noise standard deviation span
the interval 0.2 6 σ 6 2. The parameters are set as following:
λ = β σ‖h‖2, where h is the filter impulse response, β ≈ 2, µ is
set in each case to minimize the root-mean-square-error (RMSE),
B =

√
γσµ/λ A, and γ = 0.95. We compare among the `1-norm,

Fig. 3: Wavelet-based image restoration example.

the iterative p-shrinkage (IPS) penalties [30], and the SSR penalty
with logarithm and quadratic smoothing kernels. The average
RMSE is calculated for 100 independent realizations. Figure 2(b)
illustrates that non-convex penalties outperform the `1-norm solu-
tion. Moreover, as expected from Bayesian perspective, the SSR-log
outperforms the GMC penalty (SSR-Quad) [7] and IPS penalties,
especially with high noise level.

The second example is wavelet-based image restoration. The
images are first scaled into the range [0, 1], then blurred with Gaus-
sian filter of size 5 × 5 and standard deviation of 1 followed by
an additive zero-mean white Gaussian noise with standard deviation
σ = 0.05. We solve a synthesis inverse problem in (1) with W = I
and A = HWH , where H is the Gaussian blur linear operator and
WH is the inverse 4-scales 2D dual-tree complex wavelet transform
(DT-CWT) operator. We set the regularizer parameter λ as scaled
value of σ to give the highest peak signal-to-noise ration (PSNR) for
each algorithm. The image restoration results are shown in Figure 3.
As expected the SSR non-convex penalties outperform the `1-norm
solution. In general, we were able to gain 1 dB in PSNR while main-
taining the cost function convexity.

6. CONCLUSION

This paper proposes a unified framework to design non-convex
penalties that induce sparsity more effectively than the classical `1-
norm, but without sacrificing convexity of the cost function. We call
the framework sharpening sparse regularizers (SSR). The construc-
tion process resembles high-pass filtering in signal processing. The
SSR framework is applicable to any sparsity regularized least square
ill-posed linear inverse problem. Furthermore, it generates new
penalties as well as recovering and generalizing several well known
non-convex sparse penalties in the literature. The SSR framework
theory generalizes our recent generalized minimax-concave (GMC)
work [7], and numerical results demonstrate that the new framework
can yields better results than GMC. In summary, the SSR frame-
work asserts that under suitable conditions, the `1-norm can be
outperformed without sacrificing the convexity of the cost function.
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