SHARPENING SPARSE REGULARIZERS

Abdullah Al-Shabili and Ivan Selesnick

Department of Electrical and Computer Engineering
Tandon School of Engineering, New York University, USA

ABSTRACT

Non-convex penalties outperform the convex ¢;-norm, but gen-
erally sacrifice the cost function convexity. As a middle ground,
we propose a framework to design non-convex penalties that induce
sparsity more effectively than the ¢;-norm, but without sacrificing
the cost function convexity. The non-smooth non-convex regular-
izers are constructed by subtracting from the non-smooth convex
penalty its smoothed version. We propose a generalized infimal
convolution smoothing smoothing technique to obtain the smoothed
version. We call the proposed framework sharpening sparse regu-
larizers (SSR) to imply its advantages compared to convex and non-
convex regularizers. The SSR framework is applicable to any spar-
sity regularized ill-posed linear inverse problem. Furthermore, it re-
covers and generalizes several non-convex penalties in the literature
as special cases. The SSR-RLS problem can be formulated as a sad-
dle point problem, and solved by a scalable generalized primal-dual
algorithm. The effectiveness of the SSR framework is demonstrated
by numerical experiments.

Index Terms— Sparsity, convex analysis, convex optimization,
non-convexity, smoothing.

1. INTRODUCTION

Sparse approximation is a prominent theme in numerous signal and
image processing applications. This is due to the fact that high-
dimensional signals often admit a lower dimension representation
[1]. Mathematically, the problem can be stated as finding an approx-
imate solution x € R"™ to a system of linear equations Az = y,
where A € R™*" is the measurement matrix. Sparse approxima-
tion is formulated as a regularized least squares (RLS) problem

inf F(z) = (1/2)]ly — Az||3 + A ¥ (W) (M

where A > 0 is a regularization parameter, ¥ is a sparsity-inducing
regularizer, and W € RP*™ is an analysis matrix such as the Fourier
transform, gradient (total variation, TV), wavelet transform, or data-
based transforms. To obtain the sparsest solution, the regularizer
should ideally be the ¢y pseudo-norm, but the resultant problem is
NP-hard. Often, the ¢;-norm is used as a convex surrogate. The ¢;-
RLS problem is known as LASSO [2]. Nonetheless, the £1-norm ex-
hibits solution bias, since it underestimates high amplitude compo-
nents. To rectify this issue, many prior works proposed non-convex
penalties and algorithms [3-6]. However, the use of non-convex
penalties usually yields a cost function that is not convex, thus global
optimality is not guaranteed.

In this paper, we seek a middle ground between convex and
non-convex penalties. This is accomplished by proposing a gen-
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eral framework to design non-convex penalties which effectively in-
duce sparsity while preserving convexity of the cost function. The
proposed framework is general and flexible, as it is applicable to a
wide range of settings such as arbitrary matrices A (does not need
to be injective nor surjective) and W. Furthermore, it generates new
penalties as well as recovering and generalizing several well known
non-convex penalties in the literature such as MC [3], generalized
MC (GMC) [7], logarithm [4], and exponential [8].

The proposed framework relies on the synergy between sparsity-
inducing convex penalties and their smoothed function. In fact, the
proposed non-convex regularizers are formed by subtracting from
the non-smooth convex penalty its smoothed version. In order to ob-
tain the smoothed version, we propose a smoothing technique which
we call a generalized infimal convolution smoothing (GICS) tech-
nique using convex analysis. The GICS technique is a generalization
of the classical infimal convolution smoothing [9]. Smoothing tech-
niques are usually motivated for algorithmic purposes [9-11], how-
ever, this work takes advantage of the connection between smoothing
and sparsity-inducing regularizer. We call proposed the framework
sharpening sparse regularizers (SSR) to imply its pros compared to
sparsity-inducing convex and non-convex regularizers.

The development of convexity-preserving non-convex penalties
was pioneered by Blake, Zisserman, and Nikolova [12-14], and fur-
ther improved in [15-19]. However, these penalties are separable
which makes them ineffective in case the Hessian of the data fidelity
term, AT A, is singular. Recently, for the case when W = I in
(1), we proposed the GMC penalty as a non-separable non-convex
regularizer defined using convex analysis [7]. In addition, the GMC
concept was partially applied to the total variation denoising prob-
lem [20]. Compared to previous work, the SSR framework can gen-
erate new non-separable penalties, thus no restrictions on A are im-
posed. Furthermore, the GMC penalty turns out to be a special case
of the SSR framework.

The SSR-RLS problem can be formulated as a saddle point prob-
lem and solved by a scalable generalized primal-dual algorithm. Nu-
merical experiments illustrates the effectiveness of the SSR frame-
work on different examples. The proofs are omitted due to space
limitations and will be given in a future full-length paper.

2. BACKGROUND

2.1. Convex Analysis Preliminaries

For readers’ convenience, we provide a brief summary of con-
vex analysis, for more detailed discussion see [21-23]. In this
work, we focus on the class of extended-real-valued function
that are proper lower semicontinuous (Isc) convex donated as
Io(R™) = {f : R" - R U {£oo} | f proper, Isc and convex}.
The Legendre-Fenchel transform, or conjugate function f* is an
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important tool in convex analysis that is defined as
£ () =sup {&"u— f(2)} @

note that f = f** if and only if f € T'o(R™) [23]. The epi-
multiplication operation and its conjugate are defined as

[y =pfC/w), (fu)" = nf” 3)

where ;¢ > 0. Furthermore, the infimal convolution of two proper
functions f; and f> is defined as

(18 f2)(z) = inf {f1(v) + fa(x —v)}. S

It is insightful to consider of infimal convolution and Fenchel conju-
gate as an analogy of the convolution integral and Fourier transform
in signal processing [24] . In fact, the conjugate of the infimal con-
volution is given as

(AOfR) =f+f2. ®)

2.2. Smoothing

Smoothing of non-smooth functions is usually motivated for algo-
rithmic purposes when solving non-smooth optimization problems
[9-11]. In this paper, contrary to the classical motivation, smoothing
is employed to generate non-convex sparse penalties. Before dis-
cussing the relation between sparsity-inducing convex penalties and
smoothing, we provide a concise summary of smoothing techniques.

The Moreau envelope or Moreau-Yosida regularization is a tra-
ditional smoothing approach defined as

hy! (x) £ inf {h(v) +1/2p)|le — v]l3} - ©)

The Moreau envelope has many nice properties, e.g., if f € T'o(R"™)
then fy is convex continuous, finite-valued, differentiable with con-
tinuous Lipschitz gradient, and f,' € To(R™) [23]. As a classi-
cal example, the Moreau envelope of the absolute value function,
f(x) = |z|, is the Huber function [25] which is given as

2®/(2p)
|| — /2

Several smoothing approaches that generalize Moreau envelope
were proposed in the literature such as Nesterov’s [11] and infi-
mal convolution smoothing [9]. Towards our end goal of designing
sparsity-inducing non-convex penalties, we propose a generalized
smoothing technique.

lz] < p

7
lz| > p. @

Wm:mm:{

3. SHARPENING SPARSE REGULARIZERS

The SSR framework depends on the synergy between sparsity-
inducing convex penalties and smoothing. The designed penalties
are defined by subtracting from the sparse non-smooth convex
penalty its smoothed version. As an example, the minimax-concave
(MC) penalty can be written as

V() = llelh = Y Hylzi). ®)
i=1

where H, is the Huber function (7).
We propose a generalized infimal convolution smoothing (GICS)
technique that includes the Huber function as a special case. The

proposed smoothing technique an extension to the classical infimal
convolution smoothing [9]. Then, we define the SSR framework
penalty as

U (Wa) 2 |Wally — hy,s(x) ©

where h,, p is defined in (11) as the GICS smoothing of ||Wx]|1.
Next, we formularize this concept and provide various examples and
interpretations.

Definition 1 Ler the convex regularizer be
h(z) = [Wz| (10)

and B € RY*" be the steering matrix, ¢ : R — R be a smooth-
ing kernel that is a convex function continuously differentiable with
Lipschitz gradient constant 1/o (o > 0), and without loss of gen-
erality let min, ¢* (z) = 0. Then, we define the generalized infimal
convolution smoothing (GICS) as

hu,5(x) £ inf {A(v) + ®, (B(z —v))} (11)
2 (h 0 (PuoB))(x) (12)

where ®(Bz) £ 329 ¢(b x), and ®,, is the epi-multiplication
operation defined in (3)

It is straight forward to see that if B = I, the GICS reduces
to the plain infimal convolution smoothing [9]. Our generalization
is non-trivial in the context of generating non-seperable non-convex
penalties that preserve convexity even if the data fidelity term Hes-
sian, AT A, is singular. Furthermore, if ¢(x) = (1/2) 2%, then GICS
gives the Moreau envelope (6), and more interestingly, the GICS re-
covers the generalized Huber function as a special case [7].

3.1. Properties

Here we show properties of GICS smoothing (11), and consequently
the SSR penalty (9). The following proposition addresses the con-
ditions under which the GISC inherits the interesting properties of
Moreau envelope.

Proposition 1 Let the smoothing kernel ¢ be coercive and N (W) N
N (B) = {0}. Then, the infimal convolution of GICS (11) is exact
(i.e., for any x the infimum is attained for some v), and fLM,B is con-
vex continuous, finite-valued, which implies that ﬁu, B € To(R™).

Besides the infimal convolution formulation, an equivalent rep-
resentation of GICS is the Fenchel conjugate or dual formulation
using the property (5).

Proposition 2 Given the properties of GICS in Proposition 1, GICS
can be rewritten in a Fenchel conjugate or dual formulation

hy,B(x) = sup {ZTBI —h*(B"z) — M'IJ*(Z)} (13)

As expected, when B = I, then the GICS dual formulation in (13)
reduces to the Nesterov’s smoothing [11]. We next address the gra-
dient of GICS.

Proposition 3 Let v, g(x) and z;, g(x) be the solutions of the in-
Sfimal convolution (11) and the dual (13) formulations, respectively.
Then, the GICS technique, h,, B, is differentiable and the gradient is
obtained as

VBM,B(x) = BTZ;,B(CE) = BTV@M (B(m — v;,B(m))) (14)

with Lipschitz constant L,, g = || B||3/(uo).
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(a) The unit balls, pu = 2.

(d) The proximal operators with
v=1,pu=15.

(c) The SSR penalty, pp = 2.

Fig. 1: Examples of non-convex sparse penalties generated by the
proposed SSR framework.

Interestingly, when B = I and ¢(x) = (1/2)z?, then (14) reduces
to the celebrated proximal operator identity

HPIOX,—1p,« (x/pt) = T — prox,,, () (15)

where v}, ; = prox,,;, and 2}, ; = prox, 1. .
Furthermore, we can show that GISC has the following upper
and lower bounds properties

0 < hys(a) < [Wel, (16)

consequently, the SSR framework penalties have the following
bounds

0< V) (Wa) < ||[Walx. (17)

3.2. Examples and Interpretations

Figures 1(a) shows the contour of ¢;-norm and two non-convex
penalties, MC and logarithm, that are recovered by the SSR as spe-
cial cases. Note that the edges of non-convex penalties are sharper
than the ¢;-norm unit ball, thus, the name sharpening spare regular-
izers (SSR).

In order to demonstrate the generalization power of the SSR
framework, consider the simple case of B = W = I. Figures 1(b)
and 1(c) illustrates several examples of the the smoothed functions
hfh 1 and non-convex sparse penalties \I/L These penalties are ob-
tained by varying the smoothing kernel ¢. The framework is capable
of recovering several well known non-convex sparse penalties in the
literature such as minimax concave (MC) [3], logarithm [4] and ex-
ponential [8] penalties. In addition, it generates new non-convex
sparse penalties that are based on log-sum-exp, error function, and
inverse tangent function. That is, the SSR framework is a unified
approach for creating non-convex sparse-inducing penalties.

Moreover, looking at the corresponding proximal operator of
each penalty provides further insight. The proximal operator for a

proper Isc function g : R™ — R U {£o0} and parameter v > 0 is
defined as

prox,, () = argmin {h(v) + 1/(2y)lz — vl}}  (8)

The next proposition shows the condition under which prox_ g5 is
I
single-valued.

Proposition 4 The operator prox. 5 is well-defined, and is a
I

single-valued mapping if and only if po /|| Bl|3 > 7.
8 pping Yy p ot

Figure 1(d) shows the proximal operators of the previous examples.

Observe that prox, s approximates the hard-thresholding operator
iz

(prox. ) better than the soft-thresholding operator (prox, ,, ). In

fact, as y4 — oo, we have that prox,, ¢ 1 = Prox, .

3.3. Convexity conditions

One of the main advantages of the SSR framework is that despite
using non-convex penalties, it can preserve the convexity of the cost
function (1), thus global convergence can be obtained. The next the-
orem addresses the condition under which the linear inverse problem
(1) with SSR penalty remains convex.

Theorem 1 Consider a regularized least square linear inverse prob-
lem (1) with SSR penalty (9). Then, the cost function

F(z) = (1/2)|ly — Az[|3 + A ¥}/ (W) (19)

is convex if
(1/2)|ly — Az|)3 — A |Bz||3 is convex (20)
? 201 2 ’

i.e., the data fidelity term is \/(o)-strongly convex relative to
(1/2) | Bx|3.

Note in particular that the data fidelity term does not need to be
strongly convex (singular A is allowed). Instead, the requirement is
relaxed using the steering matrix, 53, which introduces non-convex
penalties along directions where there is additional curvature to ex-
ploit. In other words, relative strong convexity of the data fidelity
term is required [26,27], but not classical strong convexity. The con-
vexity condition (20) can be rewritten as

ATA > \/(op) B"B. (21)

This suggests it is reasonable to select B as a scaled version of A
such as B = \/you/\ A, where 0 < v < 1 is a non-convexity
parameter. This selection is not necessarily the best, better selection
schemes are on our search agenda.

Remark 1 The SSR framework penalty \I/E will generally be non-
separable when the steering matrix B is non-diagonal. This non-
separability is a requirement to be able to introduce non-convexity
and maintain the cost function convexity. Without this property,
whenever A is singular, the only sparse penalty that preserves the
cost function convexity is the convex £1-norm.
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Fig. 2: Sparse deconvolution example.

4. OPTIMIZATION ALGORITHMS

The SSR regularizer (9) does not always have a closed-form for ar-
bitrary W, B, and ¢. Similarly, evaluating the SSR gradient (14) or
proximal operator (18) requires solving an optimization problem at
each iteration. Nonetheless, given the convexity condition are sat-
isfied, the RLS linear inverse problem (1) with SSR regularizer can
be solved globally using an efficient first-order algorithm, which is
based on a generalization of the primal-dual algorithms [28,29]. The
optimization algorithm is based on reformulating the SSR-RLS as a
saddle-point problem such as

inf sup {L(z,v) +A ([Wzlls — [[Woll1)} 22)

where L(z,v) = (1/2)|ly — Az||3 — A @, (B(x — v)) is a differ-
entiable function, convex in x and concave in v. The only required
assumption is that ||Wz||1 has an efficient proximal operator, e.g.,
£1-norm, 1D-TV, or tight frame W. This problem structure lends it-
self to the generalization of the classical primal-dual algorithm [29].
In case the proximal operator can not be efficiently computed, other
efficient forward-backward algorithms can used, but this is beyond
the scope of this paper.

5. NUMERICAL EXAMPLES

The first example considers sparse deconvolution. The original
sparse signal x is generated from a mixed Bernoulli-double Pareto
distribution as shown in Figure 2(a). Then, the signal is filtered
with a 5™-order bandpass FIR with linear phase and corrupted with
zero mean Gaussian noise. We let the noise standard deviation span
the interval 0.2 < o < 2. The parameters are set as following:
A = Bo||h||2, where h is the filter impulse response, 8 ~ 2, u is
set in each case to minimize the root-mean-square-error (RMSE),
B = \/you/X\ A, and v = 0.95. We compare among the ¢1-norm,
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Blurred and noisy Ll-norm
PSNR= 26.47 dB

SSR-Quad/GMC SSR-Erf

PSNR= 23.99 dB PSNR= 27.44 dB PSNR= 27.59 dB

Blurred and noisy Ll-norm
PSNR= 24.50 dB PSNR= 27.81 dB

SSR-Quad/GMC SSR-Exp
PSNR= 28.96 dB PSNR= 20.17 dB

Blurred and noisy Li-norm
PSNR= 23.15 dB PSNR= 24.89 dB

SSR-Quad/GMC
PSNR= 25.67 dB

SSR-Log-Exp
PSNR= 25.98 dB

Fig. 3: Wavelet-based image restoration example.

the iterative p-shrinkage (IPS) penalties [30], and the SSR penalty
with logarithm and quadratic smoothing kernels. The average
RMSE is calculated for 100 independent realizations. Figure 2(b)
illustrates that non-convex penalties outperform the ¢;-norm solu-
tion. Moreover, as expected from Bayesian perspective, the SSR-log
outperforms the GMC penalty (SSR-Quad) [7] and IPS penalties,
especially with high noise level.

The second example is wavelet-based image restoration. The
images are first scaled into the range [0, 1], then blurred with Gaus-
sian filter of size 5 x 5 and standard deviation of 1 followed by
an additive zero-mean white Gaussian noise with standard deviation
o = 0.05. We solve a synthesis inverse problem in (1) with W =T
and A = HW*  where H is the Gaussian blur linear operator and
WH is the inverse 4-scales 2D dual-tree complex wavelet transform
(DT-CWT) operator. We set the regularizer parameter A as scaled
value of o to give the highest peak signal-to-noise ration (PSNR) for
each algorithm. The image restoration results are shown in Figure 3.
As expected the SSR non-convex penalties outperform the ¢;-norm
solution. In general, we were able to gain 1 dB in PSNR while main-
taining the cost function convexity.

6. CONCLUSION

This paper proposes a unified framework to design non-convex
penalties that induce sparsity more effectively than the classical ;-
norm, but without sacrificing convexity of the cost function. We call
the framework sharpening sparse regularizers (SSR). The construc-
tion process resembles high-pass filtering in signal processing. The
SSR framework is applicable to any sparsity regularized least square
ill-posed linear inverse problem. Furthermore, it generates new
penalties as well as recovering and generalizing several well known
non-convex sparse penalties in the literature. The SSR framework
theory generalizes our recent generalized minimax-concave (GMC)
work [7], and numerical results demonstrate that the new framework
can yields better results than GMC. In summary, the SSR frame-
work asserts that under suitable conditions, the ¢;-norm can be
outperformed without sacrificing the convexity of the cost function.



(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

(11]

[12]

(13]

[14]

[15]

[16]

7. REFERENCES

Jean-Luc Starck, Fionn Murtagh, and Jalal Fadili, Sparse im-
age and signal processing: Wavelets and related geometric
multiscale analysis, Cambridge university press, 2015.

Robert Tibshirani, “Regression shrinkage and selection via
the lasso,” Journal of the Royal Statistical Society. Series B
(Methodological), pp. 267-288, 1996.

Cun-Hui Zhang et al., “Nearly unbiased variable selection un-
der minimax concave penalty,” The Annals of statistics, vol.
38, no. 2, pp. 894-942, 2010.

Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd,
“Enhancing sparsity by reweighted /1 minimization,” Journal
of Fourier analysis and applications, vol. 14, no. 5-6, pp. 877—
905, 2008.

Rick Chartrand, ‘“‘Shrinkage mappings and their induced
penalty functions,” in Acoustics, Speech and Signal Process-
ing (ICASSP), 2014 IEEFE International Conference on. IEEE,
2014, pp. 1026-1029.

Ali Gholami and S Mohammad Hosseini, “A general frame-
work for sparsity-based denoising and inversion,” IEEE trans-
actions on signal processing, vol. 59, no. 11, pp. 5202-5211,
2011.

I. Selesnick, “Sparse regularization via convex analysis,” IEEE
Transactions on Signal Processing, vol. 65, no. 17, pp. 4481—
4494, Sept 2017.

Mariano Rivera and Jose L Marroquin, “Efficient half-
quadratic regularization with granularity control,” Image and
Vision Computing, vol. 21, no. 4, pp. 345-357, 2003.

Amir Beck and Marc Teboulle, “Smoothing and first order
methods: A unified framework,” SIAM Journal on Optimiza-
tion, vol. 22, no. 2, pp. 557-580, 2012.

Jean-Jacques Moreau, “Proximité et dualité¢ dans un espace
hilbertien,” Bull. Soc. Math. France, vol. 93, no. 2, pp. 273—
299, 1965.

Yu Nesterov, “Smooth minimization of non-smooth functions,”
Mathematical programming, vol. 103, no. 1, pp. 127-152,
2005.

Andrew Blake and Andrew Zisserman, Visual reconstruction,
MIT press, 1987.

Mila Nikolova, “Energy minimization methods,” in Handbook
of mathematical methods in imaging, pp. 139-185. Springer,
2011.

Mila Nikolova, Michael K Ng, and Chi-Pan Tam, “Fast non-
convex nonsmooth minimization methods for image restora-
tion and reconstruction,” IEEE Transactions on Image Pro-
cessing, vol. 19, no. 12, pp. 3073-3088, 2010.

P. Chen and I. W. Selesnick, “Group-sparse signal denoising:
Non-convex regularization, convex optimization,” IEEE Trans-
actions on Signal Processing, vol. 62, no. 13, pp. 3464-3478,
July 2014.

Alessandro Lanza, Serena Morigi, and Fiorella Sgallari, “Con-
vex image denoising via non-convex regularization with pa-
rameter selection,” Journal of Mathematical Imaging and Vi-
sion, vol. 56, no. 2, pp. 195-220, 2016.

4912

[17]

(18]

[19]

(20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

M. Malek-Mohammadi, C. R. Rojas, and B. Wahlberg, “A
class of nonconvex penalties preserving overall convexity in
optimization-based mean filtering,” IEEE Transactions on Sig-
nal Processing, vol. 64, no. 24, pp. 6650-6664, Dec 2016.

A. Parekh and I. W. Selesnick, “Enhanced low-rank matrix
approximation,” [EEE Signal Processing Letters, vol. 23, no.
4, pp. 493497, April 2016.

I. W. Selesnick and Ilker Bayram, “Sparse signal estimation by
maximally sparse convex optimization,” IEEE Transactions on
Signal Processing, vol. 62, no. 5, pp. 1078-1092, March 2014.

Ivan Selesnick, “Total variation denoising via the moreau en-
velope,” IEEE Signal Processing Letters, vol. 24, no. 2, pp.
216-220, 2017.

R Tyrrell Rockafellar and Roger J-B Wets, Variational analy-
sis, vol. 317, Springer Science & Business Media, 2009.

Ralph Tyrell Rockafellar, Convex analysis, Princeton univer-
sity press, 2015.

Heinz H Bauschke, Patrick L Combettes, et al., Convex analy-
sis and monotone operator theory in Hilbert spaces, vol. 2011,
Springer, 2017.

Patrick L Combettes and Jean-Christophe Pesquet, “Proximal
splitting methods in signal processing,” in Fixed-point algo-
rithms for inverse problems in science and engineering, pp.

185-212. Springer, 2011.

Peter J Huber et al., “Robust estimation of a location parame-
ter,” The annals of mathematical statistics, vol. 35, no. 1, pp.
73-101, 1964.

Haihao Lu, Robert M Freund, and Yurii Nesterov, “Relatively
smooth convex optimization by first-order methods, and appli-
cations,” SIAM Journal on Optimization, vol. 28, no. 1, pp.
333-354, 2018.

Heinz H Bauschke, Jérome Bolte, and Marc Teboulle, “A de-
scent lemma beyond lipschitz gradient continuity: first-order
methods revisited and applications,” Mathematics of Opera-
tions Research, vol. 42, no. 2, pp. 330-348, 2016.

Nikos Komodakis and Jean-Christophe Pesquet, “Playing with
duality: An overview of recent primal-dual approaches for
solving large-scale optimization problems,” IEEE Signal Pro-
cessing Magazine, vol. 32, no. 6, pp. 31-54, 2015.

Erfan Yazdandoost Hamedani and Necdet Serhat Aybat, “A
primal-dual algorithm for general convex-concave saddle point
problems,” arXiv preprint arXiv:1803.01401, 2018.

Joseph Woodworth and Rick Chartrand, “Compressed sensing
recovery via nonconvex shrinkage penalties,” Inverse Prob-
lems, vol. 32, no. 7, pp. 075004, 2016.



		2019-03-18T11:12:29-0500
	Preflight Ticket Signature




