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ABSTRACT

The standard Approximate Message Passing (AMP) algorithm effi-
ciently recovers a sparse signal from a small number of noisy linear
measurements. It requires the measurement matrix to be zero-mean,
however. Even small deviations from this requirement cause it to
diverge. In this paper, we show how mean-removal can be com-
bined with standard Bayesian AMP to achieve signal recovery. Fur-
thermore, a modified Bayesian AMP algorithm is presented, which
achieves performance comparable to AMP in the zero-mean mea-
surement matrix regime even for large mean. Simulation results and
state evolution for both techniques are provided.

Index Terms— Compressive Sensing, Approximate Message
Passing.

1. INTRODUCTION

In compressive sensing (CS), a measurement signal y ∈ RL is ac-
quired using linear measurements of a vector x ∈ RN , with L < N .
Often, Gaussian measurement noisew is considered:

y = Ax+w . (1)

The unknown signal x is assumed to be sparse and its entries inde-
pendent and identically distributed (i.i.d.). The probability density
function (pdf) of an entry xi of x equals

fx,i(x) = (1− γ)δ(x) + γN (0, 1) , (2)

where γ ∈ (0 . . . 1) controls the sparsity. The noise w is also as-
sumed i.i.d. and zero-mean in this paper. The entries of the measure-
ment matrix A are often assumed to be i.i.d. and normal distributed
with mean zero and variance L−1. This construction allows for a
variety of recovery algorithms like Iterative Soft Thresholding [1],
Approximate Message Passing [2, 3, 4] and Generalized Approxi-
mate Message Passing (GAMP)[5].

It is not always possible to choose a measurement matrix satisfy-
ing these requirements, however. Popular applications of CS employ
matrices with nonzero mean; one such application is the single pixel
camera [6], where the sensing matrix is composed of ones and zeros.
These indicate whether the light incident from a particular part of the
image is accumulated in a measurement.

1.1. Relation to Prior Work

The problem of nonzero-mean measurement matrices has been in-
vestigated in the literature. In [7], the stability of standard AMP for

nonzero-mean measurement matrices is analyzed using the Nishi-
mori condition. Furthermore, a sequential, rather than parallel, up-
date schedule is proposed for relaxed Belief Propagation (BP). This
algorithm is computationally more expensive than AMP, which ap-
proximates BP. Our work focuses on solutions based on AMP.

In [8], mean removal techniques and an adaptive damping
scheme are discussed in the context of GAMP, both for the Max-
imum a Posteriori (MAP) and the Minimum Mean Squared Error
(MMSE) case. While their algorithm is still sensitive to the matrix
mean it should be noted that it is also applicable to rank-deficient
and column-correlated measurement matrices for the GAMP case,
while this paper focuses on the case of nonzero-mean measurement
matrices and classical MMSE Bayesian AMP. The new algorithms
presented in this paper are much less sensitive to the matrix mean
compared to original Bayesian AMP. A good characterization of
(G)AMP with genericA can also be found in [9].

1.2. Motivation and Problem Statement

We consider the linear compressed sensing system

v = Bx+w , (3)

where B ∈ RL×N with L < N and the vectors x and w defined
as before. It is assumed that the prior of x is known. The matrix B
consists of i.i.d. entries for which

E {Ba,i} = µB (4)

E
{

(Ba,i − E {Ba,i})2} = L−1 (5)

applies, where Ba,i identifies the entry in the ath row and ith column
ofB. Equivalently, the matrixB can be written as

B = µB1L1
T
N +A , (6)

where 1M is the all-ones column vector of length M . Taking into
account this decomposition, (3) can be written as

v = (µB1L1
T
N +A)x+w (7)

= µB1L1
T
Nx+Ax+w︸ ︷︷ ︸

y

= µB1L1
T
Nx+ y (8)

va =
∑
i

µBxi + ya = NµB x̄+ ya . (9)

In (9), the value x̄ is defined as the arithmetic mean of the entries xi
of x. Note that even if Ex {x̄} = 0, its variance is

σ2
x̄ = Ex

{
x̄2} =

1

N2

∑
i

∑
j

E {xixj} =
1

N
σ2
x , (10)
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which is nonzero for finite N . Thus, for a particular measurement
v, the expression NµB x̄ has significant magnitude. The mean and
variance of y’s entries are

µy,a = E {ya} =
∑
i

E {Aa,ixi}+ E {wa} = 0 (11)

σ2
y,a = E

{∑
i,j

Aa,iAa,jxixj
}

+ E
{
w2
a

}
(12)

= ρ−1σ2
x + σ2

w , (13)

with ρ = L/N the subsampling ratio. Since the mean µy,a = 0, it
is tempting to reformulate (3) as a CS system with zero-mean mea-
surement matrix by setting

A = B − µB1L1TN (14)
y = v − v̄1L , (15)

thus removing the effect of the termNµB x̄ in (9). It should be noted
that for a particular instance of a CS problem, the arithmetic mean
ȳ of y is in general different from zero. Thus, performing mean-
removal as per (15) introduces an error

ε = ya − (va − v̄) = −µB
∑
i

xi + v̄ (16)

=
1

L

(∑
i

xi
∑
a

Aa,i +
∑
a

wa
)

= ȳ . (17)

In the noiseless case, the arithmetic mean of y is zero only if the
columns of A have an arithmetic mean of zero. This can be used
when the problem permits a custom design of the sensing matrix:
choosing the matrix such that its columns have an arithmetic mean
of zero makes it possible to compute y from v in the noiseless case.
The same can be achieved in the presence of noise if the CS problem
permits precise measurement of the arithmetic mean of x. Then,
the term NµB x̄ in (9) can be eliminated and A obtained by mean-
removal as per (14). In all other cases, subtracting the arithmetic
mean from v to obtain y results in an estimation error ε which is
moreover correlated with x.

2. STANDARD AMP WITH MEAN-REMOVAL

In this section, a simple way to stabilize AMP for the problem ob-
tained by mean-removal as per (14), (15) shall be presented. The
variance of the estimation error ε is

σ2
ε =

1

L

(
ρ−1σ2

x + σ2
w

)
=

1

L
σ2
y,a . (18)

In the noiseless case, the average effective signal-to-noise ratio
(SNR) is thus

SNReff
dB = 10 log10

(
ρ−1σ2

x,i

(Lρ)−1σ2
x,i

)
= 10 log10(L) . (19)

It is therefore possible to apply standard AMP to a modified noise-
less CS problem, where the mean of v andB were removed, by set-
ting the noise variance toL−2 ‖y‖22. It shall be shown below that this
stabilizes AMP for the modified problem and that AMP follows the
convergence predicted by regular state evolution with the noise vari-
ance set accordingly. Achievable signal-to-distortion ratio (SDR) of
the recovered signal is limited, especially for low-dimensional prob-
lems (N ≈ 103, ρ < 1 =⇒ SNReff

dB < 30dB) and low-rate CS (e.g.
ρ = 10−3, N = 105 =⇒ SNReff

dB = 20dB). A suitably modified

Algorithm 1 MR-AMP

y ← v − v̄, µz ← y, σ2(l)
x ← (1 + L−1)L−1 ‖y‖22

σ2
w ← L−1∑

a σ
2
w,a + L−2 ‖y‖22

Set constants tmax, ε,A = B − µB1L1TN .
All other variables are initialized to zero.
repeat
µ

(l)
x ← ATµz + µx

µ
[t−1]
x ← µx

µx ← F (µ
(l)
x , σ

2(l)
x )

σ2
x ← G(µ

(l)
x , σ

2(l)
x )

va ← µz,a

L

∑
i

∂Fi(µ
(l)
x,i ,σ

2(l)
x )

∂µ
(l)
x,i

µz ← y −Aµx + v

σ
2(l)
x ← σ2

w + 1
L

∑
i σ

2
x,i

until t > tmax or t > 1 and
∥∥∥µx − µ[t−1]

x

∥∥∥2

2
< ε ‖µx‖22

x̂ = µx

AMP algorithm is listed as Algorithm 1 and shall be referred to as
MR-AMP (AMP after mean-removal). The function F (. . . ) is an
appropriately chosen “denoiser” [3] for a particular prior of x while
the function G(. . . ) computes the variance of F ’s estimate.

3. AMP WITH ITERATIVE ERROR CANCELLATION

As shown in (17), the estimation error ε depends on the true value of
x. Furthermore, y can be computed without error when x̄ is known,
c.f. (9). For the remaining analysis, assume that x̄ 6= 0 and un-
known, as well as

∑
aAa,i 6= 0 and known µB . The dependence of

v on x can be represented as a factor graph shown in Fig. 1. There
are two new factors which are not present in a factor graph describ-
ing a classical CS problem, namely fvy,a and fx̄. The factors fvy,a
represent the dependencies between va, ya and x̄ (and optionally the
noise wa). For zero-mean Gaussian noise with variance σ2

w,a > 0
the factor reads

fvy,a(x̄, ya) ∝ exp

(
− 1

2σ2
w,a

(va −NµB x̄− ya)2

)
. (20)

The factor fx̄ describes the relationship between x̄ and x, where x̄
is an auxiliary variable. It is possible to get rid of it by introducing
dependencies between the factors fvy,a and x. Note that this re-
sults in adding O(NL) edges, while with the auxiliary variable only
O(N + L) edges are necessary. The factor fx̄ is given as

fx̄(x̄,x) = δ
(
x̄− 1

N

∑
i

xi
)
. (21)

The message passing rules of the sum-product algorithm [10] (in
AMP context [11]) can be used to derive expressions of messages
along the newly introduced edges. Since there are four new types of
edges, eight new messages can be defined. To simplify the result-
ing algorithm, only six messages are used. Following the message
passing rules, one obtains

mvy→y,a(ya) =

∫
x̄

fvy,a(x̄, ya)mx̄→vy(x̄)dx̄ (22)

my,a→vy(ya) = mf,a→y,a(ya) (23)

mvy→x̄(x̄) =

∫
x̄

fvy,a(x̄, ya)my,a→vy(ya)dya (24)
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y1

fvy,1

v1

fA1

y2

fvy,2

v2

fA2

y3

fvy,3

v3

fA3

x1 x2 x3 x4 x5 x6

fx1 fx2 fx3 fx4 fx5 fx6

x̄

fx̄

Fig. 1: Example of a graphical model describing a CS problem with
a nonzero-mean sensing matrix B. New edges have been empha-
sized. There are N = 9 unknown variables xi and L = 3 known
variables va.

mx̄→vy,a(x̄) = mf,x̄→x̄(x̄)
∏
b 6=a

mvy,b→x̄(x̄) (25)

mf,x̄→x̄(x̄) =

∫
x

fx̄(x̄,x)
∏
i

mx,i→f,x̄(xi)dx (26)

mx,i→f,x̄(xi) = mf,x,i→xi(xi)
∏
a

mf,a→x,i(xi) . (27)

The algorithm can be initialized by starting with the last message,
mx,i→f,x̄, parameterized using the first two moments. During
iterations, this is the tuple (µx,i, σ

2
x,i) with µx,i = F (. . . ) and

σ2
x,i = G(. . . ). For initialization, the prior mean and variance of

xi can be used. Subsequently, mf,x̄→x̄ can be parameterized using
mean and variance with

µf,̄x→x̄ = N−1
∑

µx,i (28)

σ2
f,̄x→x̄ = N−2

∑
σ2
x,i . (29)

During initialization, mvy→x̄ is unknown and thus, mx̄→vy,a con-
sists of the parameters µf,̄x→x̄ and σ2

f,̄x→x̄. Oncemvy,a→x̄ is known,
they can be mixed in according to (25), which is done below in (38),
(40). With mx̄→vy,a known, the message from fvy,a to ya can be
evaluated (c.f. (22)). The mean and variance of ya thus compute as
(c.f. (20))

µvy,a→y,a = va −NµBµx̄→vy,a (30)

σ2
vy,a→y,a = σ2

w,a +N2µ2
Bσ

2
x̄→vy,a . (31)

This can be shown by expressing (20) as a function of x̄, comput-
ing the product with the Gaussian message given by the parame-
ters (µx̄→vy,a, σ

2
x̄→vy,a) and finally evaluating the Gaussian integral

(22) with respect to x̄. Subsequently, one iteration of AMP can be
computed with µvy,a→y,a substituted for ya and σ2

vy,a→y,a substi-
tuted for σ2

w,a. The initial value of σ2
z,a can be computed as the

empirical variance of µvy,a→y,a. After this iteration, the message
(µy,a→vy,a, σ

2
y,a→vy,a) is

µy,a→vy,a =
∑
i

Aa,iµi→a (32)

≈
∑
i

Aa,iµx,i − µz,a

L

∑
j

∂F

∂µ(l)
(33)

σ2
y,a→vy,a =

∑
i

A2
a,iσ

2
i→a ≈

N

L
σ2
x = σ2

y→vy . (34)

In (32), µi→a is the message from variable xi to sensing factor node
fA,a. The approximation of µi→a derived for AMP [11] has been
used in the step from (32) to (33). Given va and the message from
ya to fvy,a, the message from fvy,a to x̄ can be computed:

NµBµvy,a→x̄ = va − µy,a→vy,a (35)

(NµB)2σ2
vy,a→x̄ = σ2

y→vy + σ2
w,a . (36)

At x̄ there are now L + 1 incoming messages, namely L from the
nodes fvy,a and one from fx̄. Formally and following (25), the mes-
sage from x̄ to the factor nodes fvy,a is

σ2
x̄→vy,a =

(
1

σ2
f,x̄→x̄

+
∑
b6=a

1

σ2
vy,b→x̄

)−1

(37)

≈
(

1

σ2
f,x̄→x̄

+
L− 1

σ2
vy→x̄

)−1

(38)

µx̄→vy,a = σ2
x̄→vy,a

(
µf,x̄→x̄
σ2
f,x̄→x̄

+
∑
b 6=a

µvy,b→x̄
σ2
vy,b→x̄

)
(39)

≈ σ2
x̄→vy

(
µf,̄x→x̄

σ2
f,̄x→x̄

+
1

σ2
vy→x̄

∑
b

µvy,b→x̄

)
. (40)

In the step from (37) to (38) and (39) to (40), the independence
of σ2

y→vy from a was used (c.f. (34)). The resulting AMP algo-
rithm for a nonzero-mean sensing matrix (MEAN-AMP) is listed as
Algorithm 2.

The behavior of MEAN-AMP is intuitive: it estimates x̄ from
the current estimate of x and the residual z. The estimate’s variance
influences the convergence of the algorithm through σ2(l)

x .

4. STATE EVOLUTION

It is possible to formulate a state evolution recursion by taking into
account modifications to σ2(l)

x . State evolution [2] for standard AMP
is defined by the recursion

σ2
x,[t] = E

{(
F[t−1]

(
x0 + σ

(l)

x,[t−1]z
)
− x0

)2 }
(41)

σ
2(l)

x,[t] = σ2
w + ρ−1σ2

x,[t] = σ2
w + σ2

z̃ , (42)

where z is random variable distributed according to the standard nor-
mal distribution and x0 is the true value of x. MEAN-AMP modifies
the second line of the state evolution since it introduces an effective
noise variance σ2

vy→y . Its value is lower bounded by σ2
w + ρ−1σ2

x,[t]

and achieves this bound if µB = 0. Thus, for a mean-free sensing
matrixA, state evolution for MEAN-AMP reduces to state evolution
for standard AMP. The recursion can be written as

σ2
x,[t] = E

{(
F[t−1]

(
x0 + σ

(l)

x,[t−1]z
)
− x0

)2 }
(43)

σ2
τ = σ2

w + ρ−1σ2
x,[t] = σ2

w + σ2
z̃ (44)

σ2
κ =

( 1

Nµ2
Bσ

2
x,[t]

+
L− 1

σ2
τ

)−1

(45)

σ
2(l)

x,[t] = σ2
τ + σ2

κ . (46)

If the algorithm converges, σ2
x,[t] → 0, thus σ2

κ → 0 and σ2(l)

x,[t] as-
sumes the value predicted by standard AMP state evolution.
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Algorithm 2 MEAN-AMP

Set constants σ2
w, tmax, ε,A = B − µB1L1TN

µz = v − v̄1L
σ

2(l)
x = (σ2

w + L−1 ‖µz‖22)(1 + L−1)
All other variables are initialized to zero.
repeat
µ

(l)
x = ATµz + µx

µx = F (µ
(l)
x , σ

2(l)
x )

σ2
x = G(µ

(l)
x , σ

2(l)
x )

σ2
vy→x̄ = 1

(NµB)2

(
1
L

∑
i σ

2
x,i + σ2

w

)
σ2
x̄→vy =

(
N2∑
i σ

2
x,i

+ L−1
σ2
vy→x̄

)−1

σ2
vy→y = σ2

w + (NµB)2σ2
x̄→vy

σ
2(l)
x = σ2

vy→y + 1
L

∑
i σ

2
x,i

µf,̄x→x̄ = 1
N

∑
i µx,i

µvy,a→x̄ = 1
NµB

(
va −

∑
iAa,iµx,i +

µz,a

L

∑
i
∂F

∂µ
(l)
x,i

)
µx̄→vy = σ2

x̄→vy

(
µf,̄x→x̄

σ2
f,̄x→x̄

+ L−1
Lσ2

vy→x̄

∑
b µvy,b→x̄

)
µvy→y = v −NµBµx̄→vy1L
µz = µvy→y −Aµx + µz

1
L

∑
i
∂F

∂µ
(l)
x,i

until t > tmax or t > 1 and
∥∥∥µx − µ[t−1]

x

∥∥∥2

2
< ε ‖µx‖22

x̂ = µx

5. NUMERICAL RESULTS

Performance is evaluated using the signal-to-distortion ratio:

SDRdB = 10 log10

(
‖x‖22 / ‖x̂− x‖

2
2

)
. (47)

A comparison of AMP, MR-AMP and MEAN-AMP is shown in
Fig. 2. The performance of MEAN-AMP is almost identical to AMP
for µB = 0 and does not depend on µB , as expected. Meanwhile,
MR-AMP is limited by the estimation error ε of ȳ. The dotted curves
show state evolution estimates for AMP and MR-AMP while the
dashed curve shows a state evolution estimate for MEAN-AMP at
µB = 1.

Results from state evolution can be seen in Fig. 3. Even though
σ2
κ is small, failing to improve the estimate of x̄ causes it to exhibit

an “error floor”, which limits the performance of MR-AMP. In fact,
σ2
κ is so small that numerically, σ2(l)

x = σ2
τ , which explains why

state evolution of MEAN-AMP is almost identical to AMP.
The estimated variance of µx̄→vy agrees with the estimation er-

ror, as shown in Fig. 4.

6. CONCLUSION

By quantifying the error incurred by mean-removal, we were able to
use standard AMP for recovery and accurately predict the limits of
its performance. We also present an extended algorithm which iter-
atively improves upon the estimate obtained by mean-removal. This
algorithm achieves results comparable to AMP in the zero-mean ma-
trix regime. A derivation based on belief propagation is provided.
Our state evolution formalism accurately predicts performance for
both algorithms.
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Fig. 2: Performance in terms of SDR vs. subsampling ratio ρ =
L/N with N = 103, σ2

w = 0 and sparsity γ = 0.2.
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Fig. 3: “Exit-plot”: the evolution of σ2
z̃ and σ2(l)

x , estimated with
state evolution for µB = 100, L = 700, N = 1000, σ2

w = 0 and
γ = 0.2. The effective estimation noise is thus σ2

ε ≈ 4.1 · 10−4.
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Fig. 4: Estimated variance of µx̄→vy versus squared estimation error
from 30 runs of MEAN-AMP with µB = 1, L = 700, N = 1000,
σ2
w = 0 and γ = 0.2. The diagonal line indicates the region of

equality of the two values.
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