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ABSTRACT
In this paper, we propose kinetic Euclidean distance matrices
(KEDMs)—a new algebraic tool for localization of moving points
from spatio–temporal distance measurements. KEDMs are inspired
by the well-known Euclidean distance matrices (EDM) which model
static points. When objects move, trajectory models may enable
better localization from fewer samples by trading off samples in
space for samples in time. We develop the theory for polynomial
trajectory models used in tracking and simultaneous localization
and mapping. Concretely, we derive a semidefinite relaxation for
KEDMs inspired by similar algorithms for the usual EDMs, and
propose a new spectral factorization algorithm adapted to trajectory
reconstruction. Numerical experiments show that KEDMs and the
new semidefinite relaxation accurately reconstruct trajectories from
incomplete, noisy distance observations, scattered over multiple time
instants. In particular, they show that temporal oversampling can
considerably reduce the required number of measured distances at
any given time.

Index Terms— Euclidean distance matrix, semidefinite program-
ming, trajectory localization, polynomial spectral factorization.

1. INTRODUCTION

The famous distance geometry problem (DGP) [1] asks to reconstruct
the geometry of a point set from a subset of interpoint distances.
The DGP models sensor network localization [2], microphone posi-
tioning [3, 4, 5], clock synchronization [6] and molecular geometry
reconstruction from nuclear magnetic resonance (NMR) data [7, 8, 9].
Euclidean distance matrices (EDMs) are among the most successful
tools used to design DGP algorithms.

The study of distance geometry and EDMs goes back to the works
of Menger [10], Schoenberg [11], Blumenthal [12], and Young and
Householder [13]. Many theoretical results on EDMs including the
rank characterization were derived by Gower [14, 15]. An extensive
treatise with many original results and an elegant characterization of
the EDM cone was written by Dattorro [16]; a tutorial-style introduc-
tion is given in [17]. When objects move, EDMs only characterize
a snapshot of interpoint distances. They can be used to recover the
point set geometry at each time independently. It seems intuitive
that with a good trajectory model, one should be able to leverage the
motion and improve localization, as in [21].

In this paper, we introduce kinetic EDMs (KEDMs) and show
how to use them to address kinetic distance geometry problems,
defined in Section 2. For the class of polynomial trajectories, we
show how to systematically estimate the time-varying point locations
by measuring subsets of pairwise distances. Moreover, we show that
this is possible even when the number of measured distances at any
given time is too small to localize in the static case.

Localization of moving objects from distances is useful in a
number of applications. Robot swarms, for example, must often
localize autonomously [18], especially in remote situations such as
extraterrestrial exploration [19], deep-water missions [20]. In some
emerging applications sensing is opportunistic and the positions of
reference objects are not known [22]. This problem is further related
to simultaneous localization and mapping (SLAM) [23, 24].

A large class of approaches to point set localization from inter-
point distances rely on semidefinite programming [25, 26]. We take
inspiration from these approaches and show that with some work,
trajectory localization can also be formulated as a semidefinite pro-
gram. Concretely, we show that parameters of the chosen trajectory
model can be recovered by a semidefinite relaxation and a tailor-made
alignment procedure akin to Procrustes analysis. The latter can be in-
terpreted as spectral factorization of semidefinite polynomial matrices
with side information corresponding to anchor locations.

We show through extensive computer experiments that through
our proposed method we can indeed accurately reconstruct trajec-
tories from noisy and missing distances and reduce the number of
measurements per time instant by spreading the measurements in
time.

2. STATIC AND KINETIC DISTANCE GEOMETRY
PROBLEMS

We begin by introducing the classical distance geometry problem
(DGP) and then generalize it to points moving along trajectories. We
let EN denote the set of all index pairs forN points, EN

def
= {(m,n) :

1 ≤ m < n ≤ N} and define:

Problem 1 (Distance Geometry Problem). Given an embedding di-
mension d > 0 and a subset of pairwise distances S = {dmn :

(m,n) ⊆ E}, determine whether there are points {xn}Nn=1 in di-
mension d such that dmn = ‖xm − xn‖ for all (m,n) ∈ S.

In practice the measurements are often corrupted by noise, in
which case the goal is to minimize some notion of discrepancy be-
tween the measured and estimated distances.

The kinetic distance geometry problem (KDGP) asks to estimate
entire trajectories, in contrast to DGP where we localize the points
only at measurement times. For KDGP to be well-defined, we need
to introduce a class of admissible trajectories (a trajectory model) X .
In this paper we work with a polynomial X .

Problem 2 (Kinetic Distance Geometry Problem). Given an em-
bedding dimension d > 0, a set of T sampling times Ts =
{t1, . . . , tT }, and a subset of pairwise distance measurements
S(ti) = {dmn(ti) : (m,n) ∈ EN} at each sampling time, deter-
mine whether there is a trajectory set X : T → Rd×N ∈ X such
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Fig. 1: Illustration of the trajectory estimation pipeline using KEDMs. The data consists of pairwise distance measurements distributed in
space and time. The distances are fed into a semidefinite relaxation which outputs a KEDM (Section 4). Finally, anchor point locations at a set
of L times are used to estimate the trajectories by an informed spectral factorization algorithm (Section 4.1).

that for all ti ∈ Ts and for all measurements at time ti, we have
‖xm(ti)− xn(ti)‖ = dmn(ti) for all (m,n) ∈ S(ti).

Figure 1 illustrates the KDGP and the proposed solution for
four trajectories; We can interpret KDGP is as sequence of static
DGPs with additional information about the sampling times and the
trajectory model.

2.1. Solving the Distance Geometry Problem by EDMs
We start by recalling the EDM-based approach to the DGP. Let us
ascribe the coordinates of N points in a d-dimensional space to
the columns of matrix X ∈ Rd×N , X = [x 1, x 2, · · · , xN ].
The corresponding Euclidean distance matrix (EDM) D = (‖x i −
x j‖2)ij can be written as [17]

D = K(G)
def
= diag(G)1> − 2G + 1 diag(G)>, (1)

where 1 denotes the column vector of all ones, G is the Gram
matrix G = X>X , and diag(G) is a column vector of the diagonal
entries of G. Let D̃ be a noisy, incomplete EDM with unknown
entries replaced by zeros. Then using (1), we can write the following
semidefinite program to complete and denoise D̃ :

minimize
G

‖D̃ −W ◦ K (G) ‖2F (2)

subject to G � 0

G1 = 0

rank (G) ≤ d,

where W ∈ {0, 1}N×N is a binary mask matrix whose non-zero
entries correspond to the known distances and ◦ denotes the entrywise
product. While the objective in (2) is convex (because K is linear
in the Gram matrix), the rank constraint makes the feasible non-
convex. Removing the rank constraint leads to a standard semidefinite
relaxation which is known to perform well so long as the number of
points is not too small [17, 25]. Once the Gram matrix is found, we
estimate the point locations X̂ by an eigenvalue decomposition from
G = X>X . Since the EDM only specifies the points up to a rigid
transformation, X̂ will be a rotated, reflected and translated version
of X . The constraint G1 = 0 fixes the centroid X̂ at the origin
since it implies X 1 = 0 . A standard method to recover the absolute
locations is to use known anchor points.

2.2. Orthogonal Procrustes Problem

Let X a ∈ Rd×Na , Na ≥ d + 1, be a submatrix (a selection of
columns) of X that is to be aligned with Na anchor points with
known positions listed as columns of Y ∈ Rd×Na . The least-squares

rigid alignment can be computed in two steps. We first center the
columns of Y and X a by subtracting the corresponding column
centroids xa,c and yc to get Y and X a, and then search for the
rotation and reflection that best maps X a onto Y . The second step
is known as orthogonal Procrustes analysis [27]. Let U ΣV> be the
SVD of X aY

>
. The optimal rotation is given as R

def
= V U> and

alignment is applied to the reconstructed point set as

X aligned = R(X − xa,c1
>) + yc1

>.

We will use this method to devise an alignment procedure with mov-
ing anchors in Section 4.1.

3. KINETIC EDMS AND BASIS GRAMIANS

Let X (t) = [x 1(t), . . . , xN (t)] be the trajectory matrix of N mov-
ing points in Rd, where xn(t) is the position of the nth point at time
t. We define the corresponding KEDM in a natural way:

Definition 1 (KEDM). Given a set of trajectories X (t) ∈ Rd×N [t],
the corresponding KEDM is the time-dependent matrix D(t) ∈
RN×N [t] of time-varying squared distances between the points:

D(t)
def
= D(X (t)),

where D(X (t)) = K(X (t)>X (t))

For a set of N points in Rd, we define the set of polynomial
trajectories of degree P as

Xpoly =

{
P∑

p=0

tpAp

∣∣∣∣Ap ∈ Rd×N , p ∈ {0, . . . , P}

}
. (3)

This model is common in tracking and SLAM, e.g., as a constant
velocity or constant acceleration assumption [28, 29].

Similar to the static case, our goal is to cast the trajectory retrieval
problem as a semidefinite program. A central role is again played by
the Gram matrix which now becomes a function of time,

G(t) = X (t)>X (t) =

K∑
k=0

Bkt
k, (4)

where Bk
def
=
∑k

p=0 A>p Ak−p and K = 2P .
It is useful to reduce time-varying localization to a problem that

only involves constant Gram matrices. To this end, the following
proposition lets us express the time-dependent Gramian of a polyno-
mial trajectory set in terms of K constant basis Gramians Gk:
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Fig. 2: Two set of trajectories which are not rigid transforms of each
other, but generate the same KEDM. Corresponding points have the
same color.

Proposition 1. Consider the polynomial trajectory in (3). Let Gk
def
=

G(τk), k ∈ {0, 1, . . . ,K} , K = 2P , with all τk distinct. Then

G(t) =

K∑
k=0

wk(t)Gk, (5)

with the weights w(t) = [w0(t), · · · , wK(t)]> given as

w(t) =

 1 1 · · · 1
...

...
. . .

...
τK0 τK1 · · · τKK


−1


1
t
...
tK

 .

Proof. The Gramian can be written as a linear combination of a set
of monomial terms (cf. (4)), which gives

Gk = B0 + τkB1 + · · ·+ τKk BK , k ∈ {0, · · · ,K} (6)

Each matrix equation in (6) consists of N ×N scalar equations for
entries of Gk. Focusing on a particular entry (i, j) gives a usual linear
system g = M b with column vector g = [g0, · · · , gK ]> where gk
is (i, j)-th element of Gk, the matrix M

def
= [τk

′
k ]0≤k,k′≤K , and

b = [b0, · · · , bK ]> where bk is (i, j)-th element of Bk. We also
have from (4) that [G(t)]ij = (1, t, t2, . . . , tK)b

def
= t>b . Since τk

are distinct, the square Vandermonde matrix M is invertible. We have
b = M−1g , which gives [G(t)]ij = t>M−1g . Denoting w(t) =

(M>)−1t we have that [G(t)]ij = w(t)>g =
∑K

k=0 wk(t)[Gk]ij
which proves the claim.

Same as in the static DGP, the KDGP suffers from rigid trans-
formation ambiguity. However, since at every time instant we can
apply a different rigid transform, the set of ambiguities that arise in
the KDGP is much larger than just the rigid transforms of trajectories.
In particular, rather different trajectories (nothing like rotations and
translations of each other) can generate the same KEDM, as illus-
trated Figure 2. We discuss this problem further in Section 4.1, where
we propose a method for spectral factorization of kinetic Gramians
that resolves the described ambiguities.

4. TRAJECTORY LOCALIZATION BY KINETIC EDMS

The basis Gramian representation (5) allows us to formulate a semidef-
inite program inspired by (2) for the trajectory recovery problem.
Denote the sequence of incomplete, noisy EDMs at times {ti}Ti=1 by
{D̃ i}Ti=1, and the corresponding measurement masks by {W i}Ti=1.
In analogy with (2), we propose to solve: 1

1In practice, we use a pruning method to estimate the polynomial degree
P . Initialize a large P , and keep decreasing it to meet a satisfactory trajectory
estimate.

minimize
(Gk:Gk�0)K

k=0

T∑
i=1

αi

∥∥∥∥D̃ i −W i ◦ K
( K∑

k=0

wk(ti)Gk

)∥∥∥∥2
F

subject to G(t)1 = 0 ,∀t ∈ R
G(t) � 0, ∀t ∈ R
max
t∈R

rank G(t) = d,

(7)
where αi ∝ ‖D̃ i‖−2

F are positive weights that control the relative
importance of the mismatch at different times. Since by (5) G(t)
is linear in {G(t)}Kk=0, the objective in (7) is convex. Further, all
constraints except the rank bound are convex.

The constraints ensure that the solution is a time-varying Gramian
G(t) with correct rank. The translation ambiguity is resolved by
requiring that G(t)1 = 0 , or equivalently Gk1 = 0 for k ∈
{0, . . . ,K}, which implies that the recovered trajectories are cen-
tered. In practice, we discretize the continuous-time semidefiniteness
constraint, and relax the non-convex rank constraint to get a convex
semidefinite relaxation.

A solution to (7) is a time-varying Gramian G(t) such that the
KEDM D(t) = K(G(t)) best represents the measured distance
sequences. Similar to the static case, the point set trajectories can
be obtained by spectral factorization of the time-varying Gramian,
although the latter is more challenging in the polynomial case.

4.1. Spectral Factorization with Anchor Points

Next, we show how to extract the trajectories from the estimated G(t)
with the help of anchor points. In practice, anchors might correspond
to nodes that are equipped with a positioning technology such as
GPS. Because the anchors now move, we have more possibilities for
anchor measurements than in the static case. We only need to know
the positions of anchor points at some fixed, finite set of times, but
we could use different sets of points at different times. However, such
general anchor measurements lead to generalizations of Procrustes
analysis that have no efficient solutions. Moreover, they rely on
numerically unstable polynomial spectral factorization [30].

To avoid these issues, we propose a method which uses a subopti-
mal number of anchor measurements, but in return only requires us to
factorize constant Gram matrices G(τ`) at a set of L times {τ`}L`=1

(that is, applied to constant matrices that are evaluations of polyno-
mial matrices at these particular times) as G(τ`) = X (τ`)

>X (τ`).
This is easily achievable by an eigenvalue decomposition. We know
that trajectories can only be estimated up to a time-invariant rotation
(and possibly reflection) U and a time-varying translation x (t). The
fact that U is a constant matrix follows from the spectral factoriza-
tion theorem [31]. Given a spectral factor X̄ (t) of G(t), the true
trajectory X (t) can be found as X (t) = U X (t) + x (t)1>, where
U is a d× d orthogonal matrix, x (t) is a d× 1 polynomial vector.

Suppose we measure positions of at least d+ 1 anchors at times
{τ1, . . . , τL} where L ≥ P + 1. This allows us to use Procrustes
analysis at each time τ` individually to estimate rotation and transla-
tion, Û ` and x̂ (τl) at that time. Note that there is no guarantee that
these “marginal” estimates for the rotation correspond to the unique
global U we are looking for because we do not exploit any temporal
model in computing the spectral factors X (τ`). In other words, all
Û ` could be distinct, and in principle they will. Nevertheless, we can
use them to estimate the trajectory by solving the following problem:

minimize
Ap∈Rd×N

L∑
`=1

∥∥∥∥∥
P∑

p=0

τp` Ap −
(
Û `X (τ`) + x̂ (τ`)1

>)∥∥∥∥∥
2

F

. (8)
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Fig. 3: Estimated trajectories, X̂ (t), for N = 6 points in R2 at
different levels of measurement noise and number of temporal mea-
surements. The relative trajectory mismatches are 0.038, 0.079, 0.15
and 0.028, 0.036, 0.084 for K + 1 and 2(K + 1) measurements.

The logic behind (8) is that even though the matrices Û ` are
“wrong” in the sense that they do not correspond to the unique global
U , the aligned points Û `X (τl) + x̂ (τ`) are correct thanks to the an-
chors. With sufficiently many marginal estimates, there is a unique set
of polynomial trajectories passing through them. The entire trajectory
localization procedure is summarized in Algorithm 1 and illustrated
in Figure 1.

Algorithm 1 Solving kinetic distance geometry problem by KEDMs

(i) (Ĝk)← arg min
Gk:Gk�0

Gk1=0

T∑
i=1

αi

∥∥D̃ i −W i ◦ K
( K∑
k=0

wk(ti)Gk

)∥∥2
F

;

(ii) Given anchor positions at times {τ`}L`=1, solve for {Û `}L`=1

and {x̂ (τ`)}L`=1 using Section 2.2 (Procrustes analysis);

(iii) Solve (8) for {Ap}Pp=0.

Finally, computational complexity of Algorithm 1 increases with
number of moving points, N , polynomial degree, P , and number of
temporal samples, T . Therefore, we have to bound these parameters
in practical applications.

5. SIMULATION RESULTS

In this section we empirically evaluate the performance of the pro-
posed algorithm under different experimental conditions. We study
the effect of missing measurements and noise on the quality of the
estimated trajectories. In all experiments, the distance sampling times
are uniformly distributed in the interval of interest.

5.1. Noisy Measurements

We quantify the influence of noise by the relative trajectory mismatch
eX =

∫
T ‖X (t)− X̂ (t)‖F /‖X (t)‖F dt, which we approximate

by discretizing T . We fix a trajectory, shown in Figure 3, and a set
of distance sampling times {tk}Kk=0, and generate many realizations
of noisy measurement sequences D̃t0 , · · · , D̃tK with the same noise
variance σ2. The iid noise is added to the non-squared distances.
The empirical trajectory mismatch is an average of relative trajectory
mismatches over realizations, 1

M

∑
m e

(m)
X .

In Figure 3, we show many estimated trajectories X̂ (t). As
expected, the mismatch increases with measurement noise σ2 and de-
creases with the number of measurements. In all cases, the estimated
trajectories concentrate around the true ones.

Fig. 4: The estimated sparsity level Ŝ for polynomial degrees P and
numbers of points N . The success threshold δ is set to 0.99 and the
target fraction of successful reconstructions q to 0.9.

5.2. Missing Distance Measurements

Given a sequence of measurement masks W 1, · · · ,W T , we define
the sparsity level 0 ≤ S ≤ 1 as the ratio of the average number of
missing measurements to total number of pairwise distances:

S =
[
T
(
N
2

)]−1
T∑

i=1

# of missing measurements at time ti.

We fix the dimension d = 2 and the number of sampling instants
T = 7, and vary the number of points N and the polynomial degree
P . We look for the largest number of missing distances m such that
the probability of successful estimation, p(δ,m), is greater than some
fixed value q. We empirically estimate the success probability as
p̂(δ,m) = Ms

M
where Ms is the number of successful experiments

andM = 100 is the number of trials for each choice of P andN . We
declare an experiment successful if the relative KEDM error is below
some predefined threshold δ . In practice, we run the experiment for
different m and estimate:

Ŝ(δ, q) =
m̂∗(δ, q)(

N
2

) where m̂∗(δ, q) def
= max {m : p̂M (δ,m) ≥ q} .

In Figure 4, we can see that the sparsity level increases with
the number of points N , and decreases with the polynomial degree
P . Compared to the number of missing measurements tolerated in
the static DGP, we see that KEDMs and the proposed semidefinite
relaxation indeed allow us to measure few distances at any given time,
and compensate for this by sampling at multiple times.

6. CONCLUSION

We presented kinetic Euclidean distance matrices—a generalization
of EDMs to the case of moving points, and derived algorithms based
on semidefinite programming to solve the associated trajectory local-
ization problem. A key ingredient in our method is a representation
of time-varying Gram matrices as time-varying linear combinations
of constant Gram matrices. Just as in the static case, the actual lo-
calization involves an additional spectral factorization step which is
not straightforward for polynomial matrices. We circumvented the
related difficulties by deriving a spectral factorization method that
directly uses anchor measurements. The demonstrated possibility
to reduce the spatial distance sampling rate with respect to standard
EDMs will be useful in situations where many distances are indeed
unavailable or distance measurements are costly. Future work in-
volves more general trajectory models and localization from relative
velocities in addition to distances.
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