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ABSTRACT

Disjunct matrices play a central role in non-adaptive group
testing, as they provide necessary and sufficient conditions
for identifying defective items from a large population using
a small number of tests. In this paper, we show that binary
disjunct matrices can also be very useful for recovering sparse
signals from underdetermined linear measurements. They ad-
mit non-iterative, ultra-low complexity recovery of sparse sig-
nals. Binary measurement matrices have the added benefit of
being friendly for hardware implementation. Further, we gen-
eralize the notion of disjunctness to matrices with arbitrary
(non-binary) entries and show that such matrices also admit
similar fast sparse vector recovery algorithms. We empiri-
cally demonstrate that disjunct matrices can recover denser
signals than recent non-iterative sparse recovery algorithms.

Index Terms— Disjunct matrices, compressed sensing,
non-iterative sparse signal recovery.

1. INTRODUCTION

Compressed Sensing (CS) [1–3] has emerged as a power-
ful and effective tool towards producing sparse signal rep-
resentations. In CS, the goal is to recover a sparse vector
x ∈ RM from y = Φx ∈ Rm, where the known sensing ma-
trix Φ ∈ Rm×M , with m � M . The problem of recovering
sparest vector is a combinatorial problem and is known to be
NP-hard in general [4].

The spark of a matrix, defined as the smallest number
of linearly dependent columns in Φ, provides a necessary
and sufficient condition for uniquely recovering an arbitrary
sparse signal. If the spark(Φ) = k, then sparse vectors with
up to k/2 nonzero entries can be uniquely recovered from
y = Φx. However, the recovery itself is still NP hard and
one usually has to resort to greedy methods [5] or convex
relaxations to recover sparse signals.

Mutual coherence and restricted isometry property (RIP) [6]
based techniques are used to establish recovery guarantees
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for greedy algorithms such as Orthogonal Matching Pursuit
(OMP) or convex relaxation based algorithms such as Basis
Pursuit (BP) [7]. However, both BP and OMP are still of
polynomial complexity in problem dimension, and could be-
come impractical and expensive in high dimensional settings.

Verifying conditions based on spark and RIP is not easy,
although it is known that random constructions satisfy them
with very high probability. Hence, in a practical application,
it remains unknown whether a given instantiation of the mea-
surement matrix satisfies these properties. Also, due to high
computational complexity of sparse recovery algorithms, it
is beneficial to identify a property of a matrix that is easy to
verify and also supports low computational complexity sparse
recovery algorithms, while perhaps requiring a larger number
of measurements for success. Motivated by this, in the present
work, we make the following contributions:

1. We provide a bridge between non-adaptive group testing
and compressed sensing. Specifically, disjunct matrices
have been deeply investigated in non-adaptive group test-
ing, as they are useful in detecting defective items in a
large population [8, 9]. We show that the disjunctness
property of binary matrices is also very useful in recov-
ering sparse signals.

2. We exploit the disjunctness property to present an ultra-
low complexity algorithm for identifying the support of
the sparse signal as well as recover the nonzero coeffi-
cients. As the sparse recovery algorithm is non-iterative
in nature, it is very fast in practice.

3. We extend the disjunctness property of a binary matrix to
sparse matrices. We show that a similar non-iterative and
fast sparse recovery algorithm is applicable.

Finally, through numerical simulations, we compare the re-
covery of sparse vectors with disjunct matrices with a state-
of-the-art algorithm for non-iterative sparse vector recovery.
We demonstrate that disjunct matrices can recover sparse vec-
tors with a significantly larger number of nonzero entries.

Notation: The set {1, 2, . . . , n} is denoted by [n]. The i-th
entry of x is denoted by xi. Φ(:, i) and Φ(j, :) denote the i-th
column and j-th row of Φ, respectively, and Φ(j, i) denotes
the (j, i)th entry of Φ. The support of x is {i : xi 6= 0},
denoted by supp(x). Let S ⊂ [n], then xS , (xi)i∈S and
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ΦS , (Φ(:, i))i∈S , the submatrix of Φ containing columns
indexed by S.

2. DISJUNCT MATRICES

Definition 1. An m×M binary matrix Φ is called t-disjunct
if the support of any column is not contained in the union of
the supports of any other t columns.

In other words, if we take a submatrix ΦS with |S| = t+1,
then for i ∈ [t+1], there exists ji such that ΦS(ji, i) = 1 and
ΦS(ji, l) = 0 for all l ∈ [t + 1] \ i. This observation will be
crucial for non-iterative recovery of almost all sparse signals.

Definition 2. [10] A matrix Φ is te-disjunct if, given any t+1
columns of Φ with one designated column, there are e+1 rows
with a 1 in the designated column and a 0 in each of the other
t columns.

In other words, if we take a submatrix ΦS with |S| =
t+ 1, then for i ∈ [t+ 1], there exists j1

i , . . . , j
e+1
i such that

ΦS(jdi , i) = 1 and ΦS(jdi , l) = 0 for all l ∈ [t + 1] \ i and
d = 1, . . . , e+ 1. We will exploit this property for recovering
all signals with a given maximum sparsity level.

Theorem 1. [8] Let Φ be a m×M matrix with each column
containing q ones and the overlap (i.e., the size of the inter-
section of the supports) between any two distinct columns is
at most r. Then Φ is b q−1

r c-disjunct.

2.1. Relation with other CS parameters

Theorem 2. The spark of a t-disjunct matrix is greater than
or equal to t+ 1.

Proof. Follows from the definition of a t-disjunct matrix.

Theorem 3. A matrix Φ containing the same number of ones
in each column is (bµ−1

Φ c − 1)-disjunct, where µΦ is the mu-
tual coherence of Φ, defined as the maximum absolute inner
product between any two distinct normalized columns of Φ.

Proof. Follows from Theorem 1 by observing that if each col-
umn of Φ contains q ones and the overlap between any two
columns is at most r, then its mutual coherence µΦ ≤ r

q .

3. RECOVERY USING BINARY MATRICES

3.1. Recovery of all sparse signals

In this section, we present an ultra-low complexity algo-
rithm for recovering all sparse signals when the matrix Φ
is te-disjunct. Throughout this section, we assume that
Φ is such that Φ(:, i) contains qi ones for i ∈ [M ], with
qmin , min{q1, . . . , qM}, and that overlap between any two
distinct columns is at most rmax. Then, the disjunctiveness of
Φ can be inferred from the following theorem:

Theorem 4. Φ is te-disjunct for any t < b qmin

rmax
c and e+ 1 ≥

qmin − trmax.

Proof. Let us take ΦS with |S| = t+ 1. Now for any i ∈ [t+
1], the total overlap between ΦS(:, i) with all other columns
of ΦS is at most trmax. If qmin > trmax, there are at least
qmin− trmax rows where ΦS(:, i) contains ones and all other
columns contain zeros. Now, with the choice of t and e as in
the theorem, it follows that Φ is te disjunct.

We consider the linear system y = Φx, where Φ has the
properties described above, and x is k sparse with k < qmin

2rmax
.

3.1.1. Support Recovery

The following property allows one to almost trivially identify
the support of x from y.

Claim: S = {j : |supp(Φ(:, j)) ∩ supp(y)| > qmin

2 } is
the support of x.

Proof: For i /∈ supp(x), |supp(Φ(:, i)) ∩ supp(y)| ≤
|supp(Φ(:, i)) ∩

(
∪l∈supp(x) supp(Φ(:, l))

)
| ≤ krmax.

On the other hand, if s ∈ supp(x), then |supp(Φ(:, s)) ∩(
∪l∈supp(x),l 6=s supp(Φ(:, l))

)
| ≤ (k − 1)rmax. As a result,

|supp(Φ(:, s)) ∩ supp(y)| ≥ qmin − (k − 1)rmax. Setting
qmin − (k − 1)rmax > krmax, one can have a clear demar-
cation between |supp(Φ(:, i)) ∩ supp(y)| (which is ≤ qmin

2 )
and |supp(Φ(:, s)) ∩ supp(y)| (which is > qmin

2 ) with
i /∈ supp(x) and s ∈ supp(x). Therefore, by taking
qmin > 2krmax, the claim can be established.

3.1.2. Non-zero coefficient recovery

Suppose Φ is te-disjunct for some t < b qmin

rmax
c and e ≥ qmin−

trmax − 1. Then, it is also b qmin

rmax
c

qmin
2 -disjunct. As a result,

whenever s ∈ S, for ΦS(:, s) there exist j1
s , . . . , j

e+1
s rows

such that ΦS(jds , s) = 1 and ΦS(jds , l) = 0 for l ∈ S \ s and
d = 1, . . . , e+ 1. Thus, we can directly recover

xs =

yjds , d = 1, . . . , e+ 1 if i ∈ S

0, otherwise.
(1)

Note that the first case in the above is unambiguous because
all yjds are equal for d = 1, . . . , e+ 1.

Theorem 5. Let Φ be a binary matrix with every column con-
taining at least qmin ones and with the overlap between any
two distinct columns at most rmax. Then any b qmin

2rmax
c sparse

vector can be uniquely recovered.

Remark 1. In [11], the authors provide a non-iterative algo-
rithm for sparse signal recovery using binary sensing matri-
ces with every column having q ones. The result in [11] can
be obtained as a special case of Theorem 5 for binary matri-
ces with each column containing the same number of ones.
However, for sparse signal recovery, the approach proposed
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in [11] is to first identify the support as above, and then for
each element i in the support, find the support Si of the i-th
column of Φ, and then search for an element yji in ySi

which
repeats more than q/2 times, and set xi = yji . In contrast,
we use the disjunctness property to recover the nonzero en-
tries of x. This not only allows us to generalize to matrices
with unequal number of ones in each column, as will be shown
later, it also enables the recovery of sparse vectors with much
higher sparsity level than in [11].

3.2. Recovery of almost all sparse signals

Under mild assumptions on the sparse signal, we can provide
sparse signal recovery with higher sparsity level than given in
section 3.1. These assumptions are made so that we can use
non adaptive group testing techniques for support recovery
while using disjunct matrices as the measurement matrix. Let
us consider the linear system of equations y = Φx = ΦSxS ,
where S = supp(x) and Φ is a binary matrix. We get,

yj =
∑

l∈supp(ΦS(j,:))

xl, ∀ j ∈ [m].

We assume yj 6= 0 whenever supp(ΦS(j, :)) is nonempty.
This holds (a) with probability 1 if x is drawn from a generic
random model; and (b) x is a non negative sparse signal. We
note that these assumptions are not unduly restrictive. They
are also standard in the statistical RIP (StRIP) literature [8].

3.2.1. Support recovery

Under the above assumptions on x, support recovery of x be-
comes similar to detection of defective items in group testing.
The recovery algorithm outputs the following set

S = [M ] \
⋃

j:yj=0

supp(Φ(j, :))

Irrespective of the matrix, this algorithm always provides a
set that contains the support of x. Furthermore, if the matrix
is disjunct, then the output exactly equals the support set.

Now, let Φ be t-disjunct and |S| = k ≤ t + 1. Then the
support of x can be obtained as

S = {i : supp(Φ(:, i)) ⊆ supp(y)}.

Note that, our sufficient condition here shows that we can re-
cover the support of x for sparsity level k ≤ t + 1, while in
the previous section, the sufficient condition was k < t/2.

3.2.2. Non-zero coefficient recovery

Once support of x is detected, we follow the following mech-
anism to find the coefficients xi, i ∈ S.

As Φ is t-disjunct, for i ∈ [k], there exists ji such that
ΦS(ji, i) = 1 and ΦS(ji, l) = 0 for all l ∈ [k] \ i. Now set

xi =

yji , if i ∈ S

0, otherwise
(2)

Therefore, x can be recovered using the disjunct property.
This way of finding the coefficients is non-iterative.

4. RECOVERY USING SPARSE MATRICES

4.1. Recovery of all sparse signals

In this section, we provide an algorithm for sparse signal re-
covery when the measurement matrix is sparse with arbitraty
entries. First, we show that the definition of disjunctness of
a binary matrix can be naturally extended to sparse matrices.
We use the disjunct property of sparse matrices for support re-
covery and then find the non-zero coefficients. The definition
of disjunctness of sparse non-binary matrices is as follows:

Definition 3. An m×M sparse matrix Φ is called t-disjunct
if the support of any column is not contained in the union of
the supports of any other t columns.

Definition 4. A sparse matrix Φ is te-disjunct if given any
t+ 1 columns of Φ with one designated, there are e+ 1 rows
with non-zero entries in the designated column and a 0 in
each of the other t columns.

Proposition 1. A sparse matrix Φ is t-disjunct if and only if
it is t0-disjunct.

Now, we provide an algorithm for recovering all sparse
signals. Let Φ be a sparse matrix where Φ(:, i) contains qi
number of non-zeros for i ∈ [M ] with qmin = min{q1, . . . , qM}
and the cardinality of the intersection between support of any
two distinct columns is at most rmax. Then the disjunctivess
of Φ can be obtained via the following theorem, whose proof
is similar to that of Theorem 4:

Theorem 6. Φ is te-disjunct if t < b qmin

rmax
c and e + 1 ≥

qmin − trmax.

We consider the linear system y = Φx, where Φ possess
the properties of Theorem 6, and x is k sparse with k < qmin

2rmax
.

4.1.1. Support Recovery

Following similar arguments as given in subsection 3.1.1, we
can identify the support using

S = {j : |supp(Φ(:, i)) ∩ supp(y)| > qmin

2
}.

4.1.2. Nonzero coefficient recovery

Since Φ is te-disjunct as given in Theorem 6, it is also
b qmin

rmax
c

qmin
2 -disjunct. Hence, whenever s ∈ S, for ΦS(:, s)

there exist j1
s , . . . , j

e+1
s rows such that ΦS(jds , s) 6= 0 and

ΦS(jds , l) = 0 for l ∈ S \ s and d = 1, . . . , e + 1. We can
therefore recover the nonzero coefficients as

xs =


y
jds

ΦS(jds ,s)
, d = 1, . . . , e+ 1 if i ∈ S

0, otherwise.
(3)
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4.2. Recovery of almost all sparse signals

The sparse recovery algorithm for disjunct matrices discussed
in section 3.2 can be generalized to sparse matrices. Let Φ be
a t-disjunct m×M sparse matrix. Suppose the sparse vector
x has support S, with |S| = k ≤ t+ 1, and y = Φx. Then,

yj =
∑

l∈supp(ΦS(j,:))

Φ(j, l)xl, ∀ j ∈ [m].

We assume that yj 6= 0 whenever supp(ΦS(j, :)) is non
empty. This holds (a) with probability 1 if x is drawn from
a generic random model, and (b) when x is a non negative
sparse vector. Again, we note that these assumptions are mild.

4.2.1. Support Recovery

As Φ is t-disjunct and |S| = k ≤ t + 1, we can find the
support of x as S = {i : supp(Φ(:, i)) ⊆ supp(y)}.

4.2.2. Non-zero coefficient recovery

Similar to binary matrices, we make use of the disjunct prop-
erty of sparse matrices for finding the nonzero coefficients of
x. For i ∈ [k], there exists ji such that ΦS(ji, i) 6= 0 and
ΦS(ji, l) = 0 for all l ∈ [k] \ i. Now set

xi =


yji

Φ(ji,i)
, if i ∈ S

0, otherwise.
(4)

In this case also, the recovery of x is non-iterative.

5. SIMULATION RESULTS

In this section, we present our numerical observations on
sparse signal recovery abilities of distunct matrices via our
proposed non-iterative algorithms. We also compare our so-
lution with the recently proposed non-iterative algorithms
presented in [11]. We use the binary sensing matrix Φ of size
q2 × qr+1 constructed in [12] with q being prime power and
r > 1. by construction, every column of Φ has q ones and the
overlap between any two distinct columns is at most r. The
mutual coherence µΦ of Φ is r

q [12]. From Theorem 1, Φ

is b q−1
r c-disjunct. By Theorem 4, Φ is also te-disjunct with

t < b qr c and e+ 1 ≥ q − tr.
As an example, we take Φ of size (29)2 × (29)3. There-

fore, Φ is 14−disjunct and also 714-disjunct (i.e., t = 7, e =
14) and µΦ ≤ 2

29 . We consider the sparsity k ≤ 33. For
a fixed k, we generate 1000 different k−sparse signals with
both support set of size k and the non-zero values of sparse
signal x generated at random. Our algorithm recovers the un-
known sparse vector x up to sparsity 15 exactly in all 1000
trials, as expected from the sufficient condition in Theorem 1.
Further, our algorithm can exactly recover x with sparsity 33
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Fig. 1. Avarage runtime comparison between Our proposed
method, OMP and existing non-iterative algorithm for matrix
size (29)2 × (29)3. The plot suggests that our proposed algo-
rithm takes the least time among the three.

in all 1000 trials, i.e., it can recover much denser vectors. In
contrast, the sparse recovery algorithm proposed in [11] can
recover the unknown sparse vector x only up to sparsity 7 ex-
actly in all 1000 trials. Beyond a sparsity level 9, it fails to
recover even a single unknown sparse vector x. This is be-
cause the algorithm in [11] requires 4k < q, i.e., k < 8, in
order to ensure that each nonzero entry in x occurs at least
q/2 times in y. This clearly demonstrates the better recovery
performance of our algorithm over the algorithm in [11].

Figure 1 illustrates that the run time of our proposed algo-
rithm is far lower than OMP and the non-iterative algorithm
in [11]. While the runtime of the non-iterative algorithm is
roughly constant, it cannot go beyond a sparsity level of 7.
On the other hand, OMP’s complexity is linear in the spar-
sity level and far exceeds the complexity of our non-iterative
algorithm at higher sparsity levels. The complexity of our al-
gorithm only increases marginally with the sparsity level.

6. CONCLUSIONS AND FUTURE DIRECTIONS

We showed that disjunctness property of a binary matrix is
a crucial parameter in compressed sensing. For disjunct bi-
nary matrices, we provided theoretical guarantees in recov-
ering sparse signals. Then we generalized the disjunctness
from binary matrices to sparse matrices. We used disjuntness
of sparse matrices to provide theoretical guarantees for recov-
ering sparse signals using sparse sensing matrices. Numeri-
cal results suggest that our proposed sparse signal recovery
algorithms can recover signals with higher sparsity than the
recently proposed non-iterative sparse signal recovery algo-
rithms. Our future work will consider bounds on the num-
ber of rows required for the measurement matrix to satisfy
t-disjunctness and sparse signal recovery guarantees for dis-
junct matrices in noisy measurement settings.
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