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ABSTRACT
In this paper, we propose a new Bayesian model to solve
the Robust PCA problem - recovering the underlying low-
rank matrix and sparse matrix from their noisy compositions.
We first derive and analyze a new objective function, which
is proven to be equivalent to the fundamental minimizing
“rank+sparsity” objective. To solve this objective, we de-
velop a concise Sparse Bayesian Learning (SBL) method that
has minimum assumptions and effectively deals with the crux
of the problem. The concise modeling allows simple and
effective Empirical Bayesian inference via MAP-EM. Sim-
ulation studies demonstrate the superiority of the proposed
method over the existing state-of-the-art methods. The effi-
cacy of the method is further verified through a text extraction
image processing task.

Index Terms— Robust PCA, Sparse Bayesian Learning,
low-rank matrix, sparse matrix

1. INTRODUCTION

Recovering the low-rank matrix L and sparse matrix E from
their composition M (usually with additional noise) has re-
ceived a lot of interest in the past decade. This problem is
known as Robust PCA, and was first studied in the noiseless
case [1][2][3]. The underlying optimization problem is [2]:

min
L,E

rank(L) + λ‖E‖0 s.t. ‖M −L−E‖F ≤ δ, (1)

When δ = 0, the problem reduces to the noiseless case. Using
the SVD of L, i.e., L = Udiag(s)V T , the problem in (1) is
equivalent to the following:

min
U ,V ,s�0,E

‖s‖0 + λ‖E‖0 (2)

s.t. ‖M −Udiag(s)V T −E‖F ≤ δ, U ,V orthonormal.

Denote m = vec(M), e = vec(E), and Ai = vec(UiV
T
i ),

where Ai,Ui and Vi denote the i-th column of A, U and V
respectively, (2) can be written in the following vector form:

min
A,s�0,e

‖s‖0 + λ‖e‖0 s.t. ‖m−As− e‖2 ≤ δ,

Ai = vec(UiV
T
i ), ∀i, U ,V orthonormal. (3)

This research was supported in part by the Ericsson endowed chair funds.

It is known that the optimization problem in (1) is NP-hard.
To make the problem computationally viable, [1][2][3][4]
suggest relaxing the rank minimization to nuclear norm min-
imization and the `0-‘norm’ penalty to an `1-norm penalty.
This is known as Principal Component Pursuit (PCP) [3] in
the noiseless case, and Stable Principal Component Pursuit
(SPCP)[4] in the noisy case:

min
L,E
‖L‖∗ + λ‖E‖1 s.t. ‖M −L−E‖F ≤ δ, (4)

which is equivalent to

min
A,s�0,e

‖s‖1 + λ‖e‖1 s.t. ‖m−As− e‖2 ≤ δ,

Ai = vec(UiV
T
i ), ∀i, U ,V orthonormal. (5)

Interestingly, one can recover both low-rank matrix and
sparse matrix exactly (or stably) under certain conditions by
solving (4). However, from a robust linear regression view-
point (dealing with sparse outliers e), recent progress [5][6]
shows that the Sparse Bayesian Learning (SBL) [7] approach
provides a much better solution to the `0-‘norm’ problem
than the `1 convex relaxation approach when the underlying
A is given. The superior performance of SBL is also well
known in the broader Sparse Signal Recovery (SSR) commu-
nity [8][9]. So the question is: can we leverage the advantage
of SBL to solve the Robust PCA problem?

It is worth mentioning that our recently proposed method
SRPCP [10] uses a genuine `0-‘norm’ on the sparse matrixE
and has provable recovery guarantees, but it still has to relax
the rank minimization objective to the nuclear norm on the
low rank matrix L.

There have already been several Sparse Bayesian Learn-
ing methods proposed for solving the Robust PCA problem.
The earliest work [11] proposed to model the low-rank matrix
asL = D(diag(z)diag(s))W , and sparse matrix asE = B◦
X , where z and B have binary entries obeying a Bernoulli
distribution, and the hyper-parameter of the Bernoulli dis-
tribution is further assumed to be Beta distributed. The s,
X and noise N are drawn from Gaussian distribution with
corresponding precision (inverse of the variance) parameters
generated from different Gamma distributions. Finally, the
columns ofD andW are assumed Gaussian distributed.

Babacan et al. [12] proposed a slightly simpler model,
where the low-rank matrix L = ABT , and the columns of

4883978-1-5386-4658-8/18/$31.00 ©2019 IEEE ICASSP 2019



A and B are drawn from a Gaussian distribution with each
precision parameter drawn from a Gamma distribution. The
elements of the sparse matrix are simply drawn independently
from a Gaussian distribution.

Recently, Wipf [13] proposed a even simpler model that
directly assumes the low-rank matrix L to be Gaussian and
proposed to learn its covariance matrix, while the sparse ma-
trix is modeled similar to Babacan’s work [12]. Some im-
provement over the convex PCP has been demonstrated. In
[14], a modification to the model in [13] is made and the re-
sulting method demonstrates much better performance than
the convex PCP method and Bayesian approaches. However,
though the method starts with a Bayesian setting, the com-
plexity of the inference procedure forces compromises, lead-
ing to the framework to be used as a means to approximate
and obtain an interesting objective function for minimization.

So far, the power of the SBL does not seem to have been
fully brought to bear on this problem. The main difficulty
of the current Bayesian approaches is the need to infer many
parameters from the assumed distributions. Too many as-
sumptions limit the generalization of these methods to differ-
ent practical situations. Another challenge is the difficulty of
inference with such complicated probabilistic models. Usu-
ally MCMC sampling or Variational Bayesian approximation
have to be used. An issue of interest in this paper is, can we
provide a simple model and derive a concise SBL approach
that has minimum assumptions while effectively dealing with
the crux of the problem? Also can such a model be supported
by a simple and effective inference procedure? In this paper,
we answer these questions in the affirmative.
Notation:vec(A)∈ Rn1n2×1 is a vector obtained by stacking
columns ofA ∈ Rn1×n2 , whereas Mat(h) ∈ Rn1×n2 is a ma-
trix obtained by the reverse operation on vector h ∈ Rn1n2×1.

2. SPARSE BAYESIAN LEARNING OBJECTIVE

Before presenting the method, let us first consider the funda-
mental problem that our Bayesian approach attempts to solve:

min
A,s,e

‖m−As− e‖22 + λ1‖s‖0 + λ2‖e‖0

s.t.Ai = vec(UiV
T
i ), ‖Ui‖2 = ‖Vi‖2 = 1,∀i, (6)

which is the Lagrange form of

min
A,s,e

‖s‖0 + λ‖e‖0 s.t. ‖m−As− e‖2 ≤ δ,

Ai = vec(UiV
T
i ), ‖Ui‖2 = ‖Vi‖2 = 1,∀i. (7)

Compared with (3), we have removed the non-negative
constraint on s and the orthogonality constraint onU and V .
This makes our inference procedure much easier. More im-
portantly, the following proposition guarantees that this sim-
plification does not change the optimal solution in terms of
L(= Udiag(s)V T ) and E. The proof is deferred to [15].

Proposition 1. The optimization problems in (1), (2) and
(7) have the same minimal objective value. Furthermore,
they have the same global optimal solution(s) in terms of
the low-rank matrix L and the sparse matrix E, where
L = Udiag(s)V T in (2) and (7).

3. SPARSE BAYESIAN LEARNING MODEL

Now we present our SBL approach to tackle (6). Our obser-
vation model is

m = As+e+n, s.t.Ai = vec(UiV
T
i ), ‖Ui‖2 = ‖Vi‖2 = 1

Denote the parameter space of A which satisfies the above
constraints/structure as A . The distinguishing part of the pro-
posed approach compared to the existing SBL approaches is
that we assume A is a deterministic parameter that lies in
the space A , without assuming any distribution on it, which
makes the proposed method more general.

Thanks to the removal of the non-negative constraint
on s in (6) and Proposition 1, the remaining modeling can
now directly follow the well-established SBL procedure.
Assume s ∼ N (0, Γ),Γ , diag(γ). The outlier vector
e ∼ N (0, Λ), Λ , diag(α), so the elements of e are as-
sumed to be independent and zero mean Gaussian, and their
variances are to be learned. The noise n ∼ N (0, βI), and
all the elements of n share the same variance β. The goal of
SBL (evidence maximization) is to infer the unknown param-
eters1 (e.g., Â, γ̂, α̂) from the data m. Then s and e can be
estimated via the posterior mean of the respective posterior
distributions, i.e., p(s|m, Â, γ̂, α̂) and p(e|m, Â, γ̂, α̂).

For tractable derivation, define diagonal matrix D =
(Λ + βI)−1, and matrix F = (Γ−1 + ATDA)−1. We
have that m is zero mean Gaussian vector with covariance
matrix Σm = AΓAT + Λ + βI, whose inverse is given by
Σ−1
m = (AΓAT + Λ + βI)−1 = D −DAFATD.

The posterior distribution of e givenm is Gaussian with

µe|m = ΛΣ−1
m m,Σe|m = Λ − ΛΣ−1

m Λ. (8)

The posterior distribution of s givenm is Gaussian with2

µs|m = ΓATΣ−1
m m,Σs|m = Γ − ΓATΣ−1

m AΓ. (9)

The posterior cross-covariance between s and e givenm is

Σse|m = FAT (I − βD). (10)

4. PARAMETER ESTIMATION

Let Ψ = (A,γ,α) represents the whole parameter set that
we want to estimate. Our goal is to maximize p(Ψ|m) ∝

1In this work, we specify the value of β instead of inferring it.
2Directly plugging in the expression of Σ−1

m greatly reduces complexity.
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p(m|Ψ)p(Ψ). Here we restrict A ∈ A and employ Inverse-
gamma prior on each element of γ, i.e., p(γi) = IG(a, b),
with b → 0, while do not assume any prior (or say use non-
informative prior) on α. For the inference, we use the MAP-
EM [16] procedure to optimize p(Ψ|m).

In the E-step, we have the Q-function as

Q(Ψ|Ψ(k)) = Q(A,γ,α|A(k),γ(k),α(k))

=Es,e|m;A(k),γ(k),α(k),β{− log p(m, s, e|A,γ,α, β)}
=Es,e|m;A(k),γ(k),α(k),β{− log p(m|s, e,A, β)

− log p(s|γ)− log p(e|α)}

=
1

2β
〈‖m−As− e‖22〉+

1

2

∑
i

(log γi +
〈s2i 〉
γi

)

+
1

2

∑
i

(logαi +
〈e2i 〉
αi

) + C1

=
1

2β
‖m−A〈s〉 − 〈e〉‖22 + 2 Tr(AΣse|m) + Tr(AΣs|mA

T )

+
1

2

∑
i

(log γi +
〈s2i 〉
γi

) +
1

2

∑
i

(logαi +
〈e2i 〉
αi

) + C2,

where 〈·〉 stands for the posterior expectation.
In M-step, the objective function to minimize isQ(Ψ|Ψ(k))

− log p(γ) = Q(Ψ|Ψ(k)) +
∑
i((a+ 1) log γi) + const. The

update rules for α and γ are obtained by taking derivatives:
Update α: αi = 〈e2i 〉 = µ2

e|m(i) + Σe|m(i, i),∀i.

Update γ: γi =
〈s2i 〉
2a+3 =

µ2
s|m(i)+Σs|m(i,i)

2a+3 ,∀i.
Directly updating the whole matrix A under the con-

straints A ∈ A is difficult. However, we can update each
column ofA with other columns fixed and still obey the con-
straintsA ∈ A . The order to update the columns follows the
decreasing order of the magnitudes of the elements in 〈s〉.
This is inspired by the Successive Interference Cancellation
(SIC) strategy and we omit the explanations here due to space
limit. To simplify the presentation, we assume that |〈s1〉| is
the largest, and therefore we first updateA1.
UpdateA1: GivenA(k)

2 ,A
(k)
3 , · · · ,A(k)

d ,

A
(k+1)
1 = arg min

A1=vec(U1V
T
1 )

‖U1‖2=1,‖V1‖2=1

{‖m−〈e〉−
d∑
i=2

〈si〉A(k)
i −〈s1〉A1‖22

+2 Tr(A1Σse|m(1, :))+Tr
(
A1Σs|m(1, 1)AT

1

+2

d∑
i=2

A
(k)
i Σs|m(1, i)AT

1

)
}

= arg min
A1=vec(U1V

T
1 )

‖U1‖2=1,‖V1‖2=1

‖h−A1‖22

h ,
〈s1〉m−〈s1〉〈e〉−ΣT

se|m(1,:)−
∑d

i=2[〈s1〉〈si〉+Σs|m(1,i)]A
(k)
i

〈s1〉2+Σs|m(1,1) .

At first glance, this still seems hard to solve. However,
utilizing the structure of A1, we can transform this problem
to the equivalent matrix form:

(U
(k+1)
1 ,V

(k+1)
1 ) = arg min

U1,V1

‖U1‖2=1,‖V1‖2=1

‖Mat(h)−U1V
T
1 ‖2F .

Algorithm 1 Sparse Bayesian Learning for Robust PCA

Input: ObservationM ∈ Rn1×n2 , noise variance β > 0,
Inverse-gamma prior parameter a

Initialize: k = 0, γ
(0)
i = 1, α

(0)
i = 1,∀i

d = min(n1, n2),U (0) ∈ Rn1×d,V (0) ∈ Rn2×d

While not converged Do
Step 1. FixA(k), repeat update γ, α to certain precision:
Calculate µs|m,µe|m,Σs|m, and diag(Σe|m) use (8)-(9)
αi = µ2

e|m(i) + Σe|m(i, i);
γi =

(
µ2
s|m(i) + Σs|m(i, i)

)
/(2a+ 3).

Step 2. Fix γ(k+1) and α(k+1), updateA:
Calculate Σse|m,µs|m,µe|m, Σs|m use (8)-(10)
〈s〉 , µs|m, 〈e〉 , µe|m;
index=sort([|〈s(k+1)

1 〉|, · · · , |〈s(k+1)
d 〉|], ’descend’);

for j=1:d
//updateA(k+1)

index(j) useA(k+1)
index(i), i = 1, · · · , j − 1,

//andA(k)
index(i), i = j + 1, · · · , d.

j′ , index(j);
h = 1

〈sj′ 〉2+Σs|m(j′,j′){〈sj′〉m− 〈sj′〉〈e〉 −ΣT
se|m(j′, :)

−
∑
l∈{index(i):i<j}[〈sj′〉〈sl〉+ Σs|m(j′, l)]A

(k+1)
l

−
∑
l∈{index(i):i>j}[〈sj′〉〈sl〉+ Σs|m(j′, l)]A

(k)
l }.

(U
(k+1)
j′ ,V

(k+1)
j′ ) = first singular vector pair of Mat(h)

A
(k+1)
j′ = vec(U

(k+1)
j′ V

(k+1)
j′

T
).

end
k := k + 1.
End While
Output: E = Mat(〈e〉),L = Mat(Â〈s〉)

The optimal solution is given by the first singular vector pair
of Mat(h). Updating U1 and V1 as a pair is inspired by the
success of K-SVD [17]. But note that in K-SVD, V1 is not
restricted to be unit length.

To update the jth column, the derivation is similar to up-
dating A1, except that we use the latest updates of the other
columns. The whole algorithm is summarized in Algorithm 1.
One can set d as maximal target rank for large-scale problems.
The proof of the following theorem is based on [16, Th. 7].

Theorem 1. Algorithm 1 guarantees that p(Ψ(k+1)|m) ≥
p(Ψ(k)|m) in each iteration.

Why it leads to sparse solution? Essentially we are doing
Type-II MAP, i.e., maximize p(Ψ|m) ∝ p(m|Ψ)p(γ), which
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is guaranteed by Theorem 1. We can show that

min
γ,α,A∈A

−2 log[p(m|Ψ)p(γ)]

= min
γ,α,A∈A

mTΣ−1mm+ log |Σm|+ 2(a+ 1) log |Γ|+ C

= min
γ,α,A∈A

{min
s,e

[
1

β
‖m−As− e‖22 + sTΓ−1s+ eTΛ−1e]

+ log |Σm|+ 2(a+ 1) log |Γ|}+ C

= min
s,e,A∈A

{ 1

β
‖m−As− e‖22 + min

γ,α
[sTΓ−1s+ eTΛ−1e

+ log |Σm|+ 2(a+ 1) log |Γ|]}+ C

The first term is the data-fidelity term, while the remaining
quantity is the underlying SBL penalty term. Recall that
Σm = AΓAT + Λ + βI . It is known that log-determinant
encourages low-rank [18]. So log |Σm| and log |Γ| push both
γ and α to be sparse. As a result of the variances going to
zero, the corresponding entries of s and e will be driven to 0.
Parameter setting and initialization: Recall that we assume
an Inverse-gamma prior on γ, i.e., p(γi) = IG(a, b), with
b→ 0. The reason to have an extra prior on γ becomes clear if
we reformulate the observation model asm = [A I][s; e]+
n. If no prior on γ is assumed, the elements of s will be
treated equally as the elements of e in the long vector [s; e],
which is similar to setting λ = 1 in (2). Note that the di-
mension of e is much larger than that of s. There will be a
trivial sparse solution with e = 0 and dense s. Putting a prior
on γ is analogous to setting the weight parameter λ in (2).
Motivated by the objective in the M-step, we set a such that
2a+ 3 = max

(√
‖E0‖0/rank(L0), 1

)
. Since usually there

is no knowledge of rank and sparsity, we estimate them from
the data by thresholding γ(k) and α(k) at the end of Step 1.

Since a good initialization can help accelerate the con-
vergence and avoid some local minima, we initialize U (0) ∈
Rn1×min(n1,n2) and V (0) ∈ Rn2×min(n1,n2) as the full sin-
gular vectors of some pre-estimated low-rank matrix L̂ ∈
Rn1×n2 . Here we emphasize that the dimension of U (0) is
not n1 × rank(L̂). We set β = (3σ)2 to accommodate any
modeling errors especially at the beginning of the iterations.

5. EXPERIMENTS

We compare with PCP, SPCP [4][19], Iterative Reweighted
PCP(IR-PCP) [20][21], AltProj [22], PB RPCA [14] (correct
typos in Eq.22), BRMF [23], SRPCP [10], VB RPCA [12]
(result is poor and not shown), and the oracle Matrix Com-
pletion (MC) [24] solution where only outlier-free entries are
observed. OurU (0) andV (0) are initialized from full singular
vectors of the low-rank matrix estimated by SRPCP [10].

5.1. Comparison on Simulated Data

We first follow the benchmark simulation where the low-rank
matrix is generated by ABT , where A ∈ R100×r and B ∈

R100×r are standard Gaussian matrices. The sparse matrix is
generated by selecting non-zero entries uniformly at random,
and their values are drawn from U [0, 100]. The elements of
the dense noise matrix are i.i.d. and drawn from N (0, 0.12).

The estimated low-rank matrix L̂ is compared with the
ground truth. Fig. 1 shows the average Relative Error over 10
trials in log scale, i.e., 2 log(average(‖L̂− L0‖F /‖L0‖F )).
The color bar is at top-right. We can see that the proposed
SBL approach improves upon SRPCP, and nearly matches the
performance of the oracle matrix completion solution.
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Fig. 1: Average Relative Error in log scale.

5.2. Comparison on Text Extraction

We follow [23] to conduct a text extraction image process-
ing simulation, such that the results are directly visible. The
ground truth low-rank image is a rank ten 256 × 256 matrix.
We embed black text in the image, whose values are randomly
drawn from U[−1, 0]. The text here can be viewed as sparse
matrix, whose support (mask) is of interest, which is obtained
by thresholding the estimated Ê. The threshold is automati-
cally adjusted to find the maximum F-measure [23] for each
method. The results are shown in Fig. 2. The proposed ap-
proach performs best both visually and in terms of F-measure.

Input PCP, F= 0.537 BRMF, F= 0.867

PB_RPCA, F= 0.903 SRPCP, F= 0.967 SBL, F= 0.971

Fig. 2: Recovered text mask by each method.
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