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ABSTRACT

Sparse modeling seeks to represent signals as a linear combina-
tion of a small number of atoms from an overparametrized dictionary.
Despite the success of these linear models, they can be too restrictive
for applications involving nonlinear measurements. Using nonlinear
atoms, however, poses an additional obstacle to the sparse recovery
problem, since it remains non-convex even after relaxing the sparsity
objective (e.g., using atomic norms). We address this issue in the
context of continuous dictionaries by posing nonlinear sparse recov-
ery as a sparse functional program that explicitly minimizes the func-
tional equivalent of the “`0-norm,” i.e., the function support measure.
By proving that strong duality holds for these optimization problems,
we show that nonlinear sparse recovery over continuous dictionaries
precludes relaxations since it may be solved efficiently using dual-
ity. This result is non-parametric, in that it does not assume the data
follows the measurement model, and does not require incoherence
assumptions, such as the restricted isometry/eigenvalue property. We
also use strong duality to derive a relation between minimizing the
support of a function and minimizing its L1-norm, although this does
not imply that the latter leads to sparse solutions. We illustrate this
new approach in a nonlinear line spectrum estimation problem.

Index Terms— Sparsity, sparse recovery, nonlinear compressive
sensing, functional optimization, strong duality.

1. INTRODUCTION

Sparse modeling plays a fundamental role in contemporary signal
processing and has found applications from communications to bi-
ology (e.g., [1–3]). Explicitly, it seeks to represent data or measure-
ments as the linear combination of a small number of atoms from an
overparametrized dictionary. This dictionary can be either learned
from the data or be given a priori by the application [4]. Fitting
such models is a combinatorial problem known to be NP-hard in
general [5]. This issue is typically addressed using a convex relax-
ation, such as atomic norms (e.g., `1-norm), or some flavor of greedy
algorithm, such as orthogonal matching pursuit (OMP) or iterative
hard thresholding (IHT). These approaches have proven effective in
practice and theoretical performance guarantees have been derived
for dictionaries with incoherence properties (e.g., restricted isome-
try/eigenvalue property, RIP/REP) [6–8]. Functional versions of this
problem for continuous dictionaries have also been studied [9–13].

Despite their success, linear models are often too restrictive for
certain practical problems in which atoms and/or measurement mod-
els are nonlinear (e.g., magnetic resonance fingerprinting [1], spec-
trum cartography [14], and manifold data sparse coding [15]). To
provide a concrete example, consider the problem of estimating the
frequencies and amplitudes of a small number of sinusoidal sources
whose signals saturate due to hardware limitations. Notice that the
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Fig. 1. Nonlinear line spectral estimation.

signal saturates at the sources, so that it is not possible to determine
where signals saturated from their superposition (see solid line in
Fig. 1a). In this case, classical linear methods (e.g., MUSIC [16])
and atomic norm relaxations (e.g., atomic soft thresholding, AST [9–
11]) still provide good estimates of the components frequencies, but
severely underestimate their true amplitudes (see Fig. 1b). Though
sparse recovery can sometimes be solved using “linear in the param-
eters” models, such as splines or kernel methods (e.g., for spectrum
cartography [14]), this approach is not applicable in general. Indeed,
the number of kernels needed to represent a generic nonlinear atom
may be so large that the dictionary model is no longer sparse. How-
ever, directly accounting for nonlinearities in sparse coding can be
difficult since the problem remains non-convex even after relaxing
the sparsity objective. This is evidences by the weaker guarantees
existing for `1-norm relaxations in the nonlinear case [17, 18].

In this paper, we show that when posed in functional terms,
sparse recovery turns out to be tractable over (nonlinear) continuous
dictionaries (Theorem 1). This result extends the one from [13]
to a wide class of nonlinear measurement models. In other words,
nonlinear sparse models can be estimated exactly and efficiently in
a myriad continuous applications, including nonlinear spectral esti-
mation, spectrum cartography, and super-resolution imaging. This
approach forgoes the use of discretizations and convex relaxations
by relying instead on duality and therefore bypasses issues of grid
mismatch, dictionary coherence, and ill-conditioning [19–23].

We study this approach by posing nonlinear sparse recovery over
continuous dictionaries as a functional optimization problem (Sec-
tion 2). We then derive its Lagrangian dual (Section 2.2) and prove
it has null duality gap (Section 3) despite the non-convexity (spar-
sity) and nonlinearity (dictionary atoms) of the original problem. By
exploiting separability, we show that nonlinear sparse recovery can
be solved exactly and efficiently over continuous dictionaries. More-
over, we use this strong duality result to relate sparse functional pro-
grams and L1-norm minimization by showing that their optimal val-
ues are (essentially) the same, though L1-norm optimization admits
solutions that are not sparse (Section 3.1). Finally, we illustrate these
results in a nonlinear spectral estimation application (Section 4).
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2. NONLINEAR SPARSE RECOVERY AND SFPs

2.1. Problem formulation

Nonlinear sparse recovery (sparse coding) seeks to represent a signal
or data point y ∈ Rp using as few atoms as possible from a nonlinear
dictionaryD = {F (·, β) : R→ Rp | β ∈ Ω}, where Ω is a compact
set of the real line. Explicitly, we wish to find

ŷ =

k∑
i=1

F (xi, βi) (1)

close to y for some small k. In this work, we take Ω to be uncount-
able so that we choose from a continuum of atoms as opposed to the
discrete, finite case. Furthermore, we assume that the elements of the
vector-valued functions F are normal integrands with F (0, ·) ≡ 0.
A function f(x, β) is a normal integrand if it continuous in x for all
fixed β and measurable in β for all fixed x [24]. Note that F need
not be linear or convex. For instance, the nonlinear line spectrum
estimation problem can be posed by taking

F (x, β) = ρ [cos(πtβ)x] , (2)

where t ∈ Rp collects the sampling times and ρ(x) = x for |x| < 1
and ρ(x) = 1 otherwise, applies element-wise to vectors and repre-
sents the signal saturation. In this example, β ∈ [0, 1] and x represent
the frequency and amplitude of each sinusoidal component respec-
tively. The linear case is recovered by taking F (x, β) = h(β)x for
some vector-valued function h [12, 13, 20, 21].

We propose to determine the (xi, βi) (or more precisely ŷ) by
solving a sparse functional program (SFP). SFPs are variational prob-
lems that seek sparsest functions, i.e., functions with minimum sup-
port measure. Formally, define the L0-norm1 that, similar to the dis-
crete case, measures the support of a function, i.e.,

‖X‖L0
=

∫
Ω

I [X(β) 6= 0] dβ, (3)

where the indicator function I is defined as I(β ∈ E) = 1, if β ∈ E ,
and zero otherwise. Unless otherwise specified, all integrals are
taken with respect to the Lebesgue measure over the measurable
space (Ω,B), where B are the Borel sets of Ω. SFPs explicitly min-
imize the L0-norm in (3). The relation to nonlinear sparse recovery
follows from the following observation:

Proposition 1. Let XB(β) =
∑k
i=1 xi I [β ∈ Bi] with Bi = [βi −

B−1, βi +B−1]. Then, as B →∞,

‖XB‖L0
→ 0 and

∫
Ω

BF (XB(β), β) dβ →
k∑
i=1

F (xi, βi).

Proof. The result follows by noting that
∫

Ω
BF (XB(β), β) dβ =∫

Ω
B I [β ∈ Bi]F (xi, β) dβ and from the fact thatB I [β ∈ Bi] con-

verges weakly to δ(β − βi) as B → ∞, where δ is the Dirac’s
delta [25]. �

Nonlinear sparse recovery can then be posed as the SFP

minimize
X∈X

λ ‖X‖L0
+

∫
Ω

F0 (X(β), β) dβ

subject to ‖y − ŷ‖22 ≤ ε

ŷ =

∫
Ω

BF (X(β), β) dβ

(PI)

1As in the discrete case, the “L0-norm” is not a norm. We however omit
the quotation marks so as not to burden the text.

where λ > 0 and B > 0 are a parameters that controls the sparsity
and approximation error of the solution, F0 : R × Ω → R is an
optional regularization term with F0(0, ·) ≡ 0 (e.g., take F0(x, β) =
x2 for shrinkage), and X is a composable function space, i.e.,
if X,X ′ ∈ X , then for any Z ∈ B it holds that X̄ ∈ X for

X̄(β) =

{
X(β), β ∈ Z
X ′(β), β /∈ Z

.

In the sequel, we will take X = L2, although all Lebesgue spaces
or function spaces with pointwise constraints (e.g., X = {X ∈ B |
X ≤ Γ a.e.}) are also composable. Since B is finite and X is a
functional space, solutions X? of (PI) cannot contain point masses.
Instead, they will be a combination of bump functions centered
around βi. From Proposition 1, we can therefore obtain the param-
eters of (1) by taking βi to be the centers of the bump functions
and xi = B

∫
Ω
X?(β)dβ.

Nevertheless, solving (PI) is challenging since it is both infinite
dimensional and non-convex. Moreover, discretizing (PI) can lead to
NP-hard problems [5] and even if the L0-norm was relaxed to the L1-
norm, as in the discrete case, (PI) would remain non-convex due to
the nonlinear equality. In this work, we propose to solve (PI) using
duality. Though this approach is often used to solve semi-infinite
convex programs [9–11, 26], SFPs are not convex optimization prob-
lems. To address this issue, we first derive the dual problem of (PI)
in the next section. Since it is both finite dimensional and convex, the
dual of (PI) can be solved using convex optimization methods such
as (stochastic) (sub)gradient ascent. We then show that we can obtain
a solution of (PI) from a solution of its dual by proving that it has null
duality gap (Section 3).

2.2. The Lagrangian dual of (PI)

To formulate the dual problem of (PI), introduce the Lagrange multi-
pliers µ ∈ Rp, corresponding to the equality constraint, and the non-
negative ν ∈ R+, corresponding to the inequality constraint. Then,
the Lagrangian dual of (PI) is defined as

L(X, ŷ,µ, ν) = λ ‖X‖L0
+

∫
Ω

F0 (X(β), β) dβ

+ ν
(
‖y − ŷ‖22 − ε

)
+ µT

(∫
Ω

F (X(β), β) dβ − ŷ
)

.

(4)

Its dual function is therefore

d(µ, ν) = min
X∈X ,ŷ

L(X, ŷ,µ, ν), (5)

so that the dual problem of (PI) is given by

maximize
µ, ν≥0

d(µ, ν). (DI)

By definition, (DI) is a convex program whose dimensionality is
equal to the number of constraints [27]—in this case, on the order of
the number of measurements p. It is therefore tractable as long as we
can evaluate the dual function d. Indeed, solving (DI) is necessarily
at least as hard as solving the minimization in (5). The dual function
of SFPs, however, can be computed efficiently. To see why this is the
case, note that the joint minimization in (5) separates into d(µ, ν) =
dX(µ) + dŷ(µ, ν)− νε with

dX(µ) = min
X∈X

∫
Ω

[
F0 (X(β), β) + λ I [X(β) 6= 0]

+ µTF (X(β), β)
]
dβ

(6)
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and dŷ(µ, ν) = minŷ ν ‖y − ŷ‖22 − µ
T ŷ = −‖µ‖2 /(4ν) −

µT y. The quadratic program dŷ can be evaluated in closed-form,
whereas dX is again infinite dimensional and non-convex. Yet, sep-
arability of the objective across β can be exploited to reduce this
problem to a scalar optimization problem followed by thresholding.

Proposition 2. Consider the functional optimization problem in (6)
and define

γo(µ, β) = min
x∈R

F0(x, β) + µTF (x, β). (7)

Then, dX(µ) =
∫
S [λ+ γo(µ, β)] dβ for S = {β ∈ Ω |

γo(µ, β) < −λ}.

Proof. We start by separating the objective of (6) using the following
lemma:

Lemma 1. Let G(x, β) be a normal integrand. Then,

inf
X∈X

∫
Ω

G (X(β), β) dβ =

∫
Ω

inf
x∈C

G(x, β)dβ. (8)

Proof. See [24, Thm. 3A]. �

We can therefore restrict ourselves to solving individually for each β
the problem G(β) , minx∈R F0 [x, β] + λ I (x 6= 0) +µTF (x, β).
Despite the non-convexity of the indicator function, this is a scalar
minimization whose solution involves a simple thresholding scheme.
Indeed, only two conditions need to be checked: (i) if x = 0,
then G(β) vanishes; (ii) if x 6= 0, the indicator function is one
and G(β) = λ + γo(µ, β). The value of G(β) is the minimum of
these two cases. Using (8) then yields the desired result. �

Proposition 2 provides a practical way to evaluate (5), although it
relies on being able to solve (7). Regardless of whether F0 and/or F
are non-convex functions, (7) is a scalar problem that can typically
be solved efficiently using global optimization techniques [28] or
through local search procedures, as in the nonlinear line spectrum
estimation application in Section 4. Thus, the dual function can be
evaluated as

d(µ, ν) =

∫
S

[λ+ γo(µ, β)] dβ − ‖µ‖
2

4ν
− µT y − νε (9)

for γo as in (7) and S = {β ∈ Ω | γo(µ, β) < −λ}, and (DI) can
be solved using any convex optimization algorithm [27].

Having established that we can solve the dual problem (DI), all
that remains is showing how it may be used to obtain a solution
for (PI). Since SFPs are not convex programs, there is no reason
to expect that the optimal value of (DI) is anything more than a lower
bound on the optimal value of (PI) [27]. In the sequel, we show that
this is not the case by proving that (PI) has zero duality gap.

3. STRONG DUALITY OF SFPs

The main result of this section is stated below.

Theorem 1. Suppose that F0 and F have no point masses (Dirac
deltas) and that Slater’s condition holds for (PI). Then, strong duality
holds for (PI), i.e., P = D for P , the optimal value of (PI), and D,
the optimal value of (DI).

Proof. See [29]. �

Theorem 1 states that although (PI) is a non-convex functional
program, it has null duality gap. Because the dual problem is always
convex, (PI) can be solved exactly and efficiently using convex pro-
gramming. Indeed, if µ?, ν? are minimizers of (DI) and X?, ŷ? are
solutions of (PI), it holds that

(X?, ŷ?) ∈ argmin
X∈X ,ŷ

L(X, ŷ,µ?, ν?). (10)

If L is strongly convex (e.g., when regularizing with shrinkage), the
set on the right-hand side of (10) is a singleton and the set mem-
bership becomes equality. It is worth noting that Theorem 1 is a
non-parametric result in the sense that it makes no assumption on
the existence or validity of the dictionary model (1). More to the
point, it does not require the signals or data to arise from the dic-
tionary D or even to be composed of few atoms. This implies, for
instance, that the most parsimonious description of a signal in some
dictionary can be determined regardless of whether such signal fol-
lows (1) or the dictionary actually describes the signal. In practice,
this is of utmost importance given that there are arguments for obtain-
ing sparse descriptions that are not epistemological, such as reducing
computational costs, and that it is often unrealistic to assume that the
dictionary was used to generate the data, especially when it is learned
from samples.

A corollary of Theorem 1 is that SFPs are closely related to L1-
norm minimization problems. In a sense, it turns out these two prob-
lems are equivalent despite the fact that L1-norm optimization does
not always yield sparse solutions. We explore these conclusions in
the sequel.

3.1. Relation between L0- and L1-norm optimization

Similar to the discrete case, there is a close relation between L0-
and L1-norm minimization. Formally, consider

minimize
|X|≤Γ a.e.

‖X‖Lq

subject to ‖y − ŷ‖ ≤ ε

ŷ =

∫
Ω

F (X(β), β) dβ

(Pq)

Problem (P0) [i.e., (Pq) with q = 0] is an instance of (PI) without
regularization (F0 ≡ 0) in whichX is the set of measurable functions
bounded by Γ > 0. On the other hand, (P1) [(Pq) for q = 1] is
a functional version of the classical `1-norm minimization problem.
The following proposition shows that for a wide class of dictionaries,
the optimal values of (P0) and (P1) are the same (up to a constant).

Proposition 3. Let xo(µ, β) = argmin|x|≤Γ |x| − µTF (x, β) sat-
urate, i.e., xo(µ, β) 6= 0⇒ |xo(µ, β)| = Γ for all µ ∈ Rp and β ∈
Ω. If P0 (P1) is the optimal value of (Pq) when q = 0 (q = 1) and
Slater’s condition holds, then P0 = P1/Γ.

Proof. The proof follows by relating the dual values of (Pq) for q =
0, 1. First, define its Lagrangian as

L(X,z,µ, ν) = ‖X‖Lq
+ ν (‖y − ŷ‖ − ε)

+ µT
(
ŷ −

∫
Ω

h(β)X(β)dβ

)
.

(11)

Then, for q = 0, we can leverage Lemma 1 to obtain the dual function

d0(µ, ν) =

∫
Ω

I(µ, β)dβ − w(µ, ν), (12)

4880



where I(µ, β) = min|x|≤Γ I(x 6= 0) − µTF (x, β) and w(µ, ν) =

−‖µ‖2 /(4ν) − µT y − νε. Notice that w is homogeneous as
in w(αµ, αν) = αw(µ, ν) for α > 0. Since the integrand in (12) is
non-zero only over the set S0(µ) = {β ∈ Ω | max|x|≤Γ µ

TF (x, β) >
1}, we can rewrite (12) as

d0(µ, ν) =

∫
S0(µ)

[
1− max

|x|≤Γ
µTF (x, β)

]
dβ − w(µ, ν),

(13)
Proceeding similarly, the dual function of (P1) reads

d1(µ, ν) =

∫
S1(µ)

[
Γ− max

|x|≤Γ
µTF (x, β)

]
dβ − w(µ, ν), (14)

where we used the saturation hypothesis to obtain that the integrand is
non-trivial only on S1(µ) = {β ∈ Ω | max|x|≤Γ µ

TF (x, β) > Γ}.
To conclude, observe from (13) and (14) that d0(µ, ν) =

d1(Γµ,Γν)/Γ by recalling that w is homogeneous and S1(Γµ) =
S0(µ). Immediately, it therefore holds that if (µo, νo) is a max-
imum of d0, then (Γµo,Γνo) is a maximum of d1: suffices it to
note that ∇d0(µo, νo) = 0 ⇔ ∇d1(Γµo,Γνo) = 0. Since d1 is a
concave function, (Γµo,Γνo) is a global maximum. Given that (Pq)
has zero duality gap for q = 0 (Theorem 1) and q = 1 (convex
program), it holds that P0 = maxµ,ν≥0 d0(µ, ν) = d0(µ?, ν?) =
d1(Γµ?,Γν?)/Γ = maxµ,ν≥0 d1(µ, ν)/Γ = P1/Γ. �

Proposition 3 shows that the L0- and L1-norm minimization
problems found in nonlinear sparse recovery are equivalent in the
sense that their optimal values are (essentially) the same. It is worth
noting that establishing this relation requires virtually no assump-
tions: the saturation hypothesis is met by a wide class of dictionaries,
most notably linear ones. This is in contrast to the discrete case,
where such relations exist only for incoherent, linear dictionar-
ies. Nevertheless, Proposition 3 does not imply that the solution
of the L0- and L1-norm problems are the same. In fact, although
they have the same optimal value, (P1) admits solutions with larger
support (see Remark 1). Although conditions exist for which the L1-
norm minimization problem with linear dictionaries yields minimum
support solutions [12, 20, 21], Theorem 1 precludes the use of this
relaxation for continuous dictionaries, both linear and nonlinear.

Remark 1. Proposition 3 gives an equivalence between L0- and L1-
norm minimization problems in terms of their optimal values, but not
their solutions. We illustrate this point with the following example:
let ε = 0, y = [ y1 y2 ]T with |y1|, |y2| < Γ/2, and F (x, β) =

h(β)x, where h(β) = [ h′(β) 1− h′(β) ]T with h′(β) = I(β ∈
[0, 1/2]). It is ready that the optimal value of (P1) is P1 = |y1|+|y2|.

Now consider the family of functions indexed by 0 < a ≤
Γ, Xa(β) = a sign(y1) I(β ∈ A1) + a sign(y2) I(β ∈ A2),
where A1 ⊆ [0, 1/2] with |A1| = |y1|/a and A2 ⊆ [1/2, 1]
with |A2| = |y2|/a. For all a, Xa is a solution of (P1) (it is (Pq)-
feasible with value P1) with support ‖Xa‖L0

= (|y1| + |y2|)/a.
Thus, (P1) admits solutions that do not have minimum support,
whereas only XΓ is a solution of (P0).

4. NONLINEAR LINE SPECTRAL ESTIMATION

In this section, we illustrate the use of (PI) to estimate the superpo-
sition of a small number of clipped (saturated) sinusoids. To do so,
we use a dictionary composed of the atoms in (2) and add a shrink-
age term to the objective by taking X = L2 and F0(x, β) = x2

for all β ∈ Ω. We obtain a solution of (PI) by solving its dual
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Fig. 2. Reconstruction MSE and average estimated support for non-
linear line spectral estimation.

problem (DI) and applying (10). Using Proposition 2, we can ob-
tain the dual function d in the objective of (DI) by solving (7). Ex-
plicitly, we must evaluate γo(µ, β) = minx∈R x

2 + µT ρ [h(β)x]
with h(β) = cos(πtβ). Solving this non-convex problem actually
reduces to finding the minimum of the values of p quadratic prob-
lems. Namely, assume that h is sorted such that h1 ≤ · · · ≤ hp and
define wi(x) = [h1x · · · hix 1 · · · 1]T . For conciseness, we omit
the dependence on β. Then, γo(µ, β) = min1≤i≤p γ

o
i (µ, β) for

γoi = min
1/|hi+1|≤|x|≤1/|hi|

x2 + µTwi(x), i = 1, . . . , p− 1,

γop = min
|x|≤1/|hp|

x2 + µThx.

We compared the SFP approach to two linear approaches: MU-
SIC [16], an eigendecomposition-based method, and AST [9–11],
an L1-norm convex relaxation of (PI). The resulting reconstruction
mean-square errors (MSEs) with the k most significant components
are shown in Fig. 2a and the average estimated support size (across 10
realizations) are shown in Fig. 2b. In these experiments, the measure-
ment are given by y =

∑5
j=1 ρ [xj cos(πtβj)] + v, where t = [ti]

with ti integers in [−30, 30] (p = 61), the frequencies βj are drawn
randomly from [0, 0.5] with a minimum spacing of 4/p thus guar-
anteeing that AST can discriminate the components [11], and v is a
vector collecting independent zero-mean Gaussian random variables
with variance σ2

v . The amplitudes Aj were drawn uniformly at ran-
dom between 0.5 and 3, so that the probability of saturation is 80%.
For MUSIC, we use the actual number of spectral lines k = 5. For
AST, we the optimal regularizer from [10] which depends on σ2

v .
Both methods estimate the frequencies βj and determine the ampli-
tudes xj using least squares. For (PI), we use ε = pσ2

v and λ = 100
for all noise levels except σ2

v = (2, 5) for which we used λ = 80. We
then computed the reconstruction MSE by evaluating ŷ as in (PI).

5. CONCLUSION

We tackled nonlinear sparse recovery over continuous dictionaries by
formulating this problem as an SFP. We then showed that these op-
timization problems have no duality gap and can therefore be solved
efficiently using duality. This approach bypasses issues of grid mis-
match and dictionary coherence found in discrete versions of sparse
recovery by forgoing the use of convex relaxations. Moreover, we
showed that, as in the discrete case, there is a close relation be-
tween L0- and L1-norm optimization, even though the latter need
not yield sparse solutions. We illustrated this method by estimating
a superposition of sinusoids from saturated signals, but foresee that
this technique can be applied to a wide variety of problems.
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